
r.

r

r
r

_ "

P r i m e , X . 4 0 0 P r o g r a m m e r ' s
Guide
Release 1.1

D0C11277-1 LA

X.400 Programmers Guide

First Edition

Liz Parsons

This book documents the use of
Prime X.400 at Release 1.1., which
runs on PRIMOS® Master Disk Revision
Levels 21 JO3 and above, and 22.0 and above.

Prime Computer, Inc., Prime Park, Natick, MA 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1989 by Prime Computer, Inc. All rights reserved.

PRIME, PRIME, PRIMOS, and the PRIME logo are registered trademarks of Prime
Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655, 2755, 4050,
4150, 4450, 6150, 6350, 6550, 9650, 9655, 9750, 9755, 9950, 9955, 9955II, PERFORMER,
PRIME EXL, PRIME TIMER, PRIME/SNA, PRIMELINK, PRIMENET, PRIMEWORD,
PRODUCER, RINGNET, PT25, PT45, PT65, PT200, PT250, PST 100, PW153, PW200, and
PW250 are trademarks of Prime Computer, Inc.

This document was prepared in the United Kingdom by Technical Publications Department,
International Systems Marketing and Development, Willen Lake, Milton Keynes, MK15 ODB,
United Kingdom.

PRINTING HISTORY

First Edition (DOC11277-1LA) March, 1989 for Release 1.1

CREDITS

Design: UK Technical Publications
Editorial: John Wells
Project Support: Alan Mynard
Illustration: Kevin Maguire
Document Preparation: Kevin Maguire
Production: Prime Technical Publications production unit

HOW TO ORDER TECHNICAL DOCUMENTS

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Friday,
8:30 a.m. to 5.00 p.m. (EST).

CUSTOMER SUPPORT

Prime provides the following toll-free numbers for customers in the United States needing
service:

1-800-343-2320

For other locations, contact your Prime representative.

SURVEYS AND CORRESPONDENCE

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

CONTENTS

ABOUT THIS BOOK
Chapter Contents
Related Documentation
Prime Documentation Conventions

1 INTRODUCTION
OSI Communications
Overview of X.400

2 PROGRAMMING USING THE PRIME X.400
API
Prime X.400 Concepts
X.400 Message Types for User Agents
X.400 Message Types for Gateways
Message Structure
Data Structures
Using the Prime X.400 API Routines
Handling User Agent Messages with the API
Handling Gateway Messages with the API

3 PRIME X.400 API LIBRARY
Introduction
Summary of Routines
X4_ACCEPT
X4_ALLOC
X4_CLEAR
X4_CLOSE
X4_COPY
X4_DECIA5
X4_DECT61
X4_DRNOTIFY
X4_DUMP
X4_ENCHAIN
X4_ENCIA5
X4_ENCT61
X4_ERROR
X4_FIND
X4_GET
X4 GETGDI

vn
v i i
v i i i
ix

1-1
1-1
1-2

2-1

2-1
2-2
2-2
2-3
2-7
2-9
2-13
2-16

3-1
3-1
3-2
3-4
3-5
3-6
3-7
3-8
3-9
3-11
3-12
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-26

First Edition

X4_GETMTA
X4_INIT
X4_KILL
X4_LOGOFF
X4_LOGON
X4_OPEN_GWI
X4_OPEN_UAI
X4_PR0BE
X4_PUT
X4_READ
X4_REJECT
X4_RELEASE
X4_REPLY
X4 SEND

3-27
3-28
3-29
3-30
3-31
3-33
3-34
3-35
3-36
3-42
3-44
3-45
3-46
3-48

APPENDICES

A NON-C SYNTAX API LIBRARY ROUTINES A-1
Introduction A-1
Non-C API Library Routines A-2
X4P$DECIA5 A-2
X4P$DUMP A-4
X4PSENCIA5 A-5
Parameter Types A-6
PL1 Syntax API Library Routines A-6

B EXAMPLE APPLICATION PROGRAM TO
SEND A MESSAGE

B-l

Introduction B-l

X.400 API LIBRARY ROUTINE RETURN C-l
VALUES
Introduction C-l

INDEX Index-1

VI First Edition
~ >

ABOUT THIS BOOK

The X.400 Programmer's Guide is a reference to the X.400 Application Programming
Interface (API). The book is written for programmers that use Prime X.400 library
routines to develop mail applications. It gives a brief overview of Prime X.400, and
describes the function and use of the X.400 application programming subroutines.

Chapter Contents
Chapter 1 Introduction, introduces the Prime X.400 product and OSI architecture.

Chapter 2 Programming Using the Prime X.400 API, introduces Prime X.400 concepts,
describes the types of message available to User Agents (UAs) and
gateways, and describes how a user programs the Prime X.400 API to
construct, send, and receive messages correctly.

Chapter 3 Prime X.400 API Library, contains details of Prime X.400 library
subroutines, in easy reference format.

Appendix A Non-C Syntax API Library Routines, lists the PL1 parameter types that
correspond to the C parameter types used in the API library routine
descriptions in Chapter 3. It lists the PL1 syntax of each API library
routine, and describes three API library routines (described in C) that are
used for calling with non-C file units.

Appendix B Example Application Program to Send a Message, lists the standard code
used to send an X.400 message using the Prime X.400 API.

Appendix C X.400 API Library Routine Return Values, lists the return values of each
of the X.400 API library routines.

First Edition vu

X.400 PROGRAMMER'S GUIDE

Related Documentation
Other Prime manuals which may be useful are

• X.400 Administrator's Guide {DOC 1127 6-IL A)

Other manuals which you may find useful are

• CCITT 1984 Red Book Volume VIII Fascicle VIII.7, Recommendations X.400
X.430

v i u F i r s t E d i t i o n

ABOUT THIS BOOK

Prime Documentation Conventions
The following conventions are used throughout this book,
these commands and statements in typical applications.

Examples illustrate how you use

Convention

UPPERCASE

Italics

UPPERCASE/Boldface

UPPERCASE/iroto

Monospace

r

Explanation

Uppercase words indicate
file names, and directory
names.

In text, italics indicate API
routine arguments. In mes
sage header and envelope
data structure data item
descriptions, italics indicate
description emphasis, message
sequence types and body
part types.

Uppercase boldface words
indicate C file pointer
return values, keys which
enable access to root data
structures, and data items
found in message envelope
and header data structures.

Uppercase italic words in
dicate data structure types.

User examples and program
listings are displayed in
monospace.

Example

SYSCOM

key

Reply Indication

Content Type

ForwardedlPMessage

X4_OK

X4_K__ROOT_BODY

X4_K_SUBJECT

X4JTIME

code = x4_logoff(pid);

First Edition IX

INTRODUCnON

OSI Communications
Open Systems Interconnection (OSI) is a set of internationally recognized recommendations,
made by the International Organization for Standardization (ISO), and the International
Telegraph and Telephone Consultative Committee (CCITT), that enable communications based
upon a seven layer architectural model (illustrated in Figure l-l).

r

layer 7

6

Application -< -

Presentation

Session

Transport

Network

Link

Physical

Network Network

Link Link

Physical Physical

▶ Application

Presentation

- ▶ Session

Transport

Network

Link

Physical

FIGURE 1-1. The OSI Reference Model

Each layer in the model is defined in terms of the service it provides to the layer above,
the service it expects from the layer below, and the protocol used to communicate between
equivalent entities within the same layer at different points within a network.

First Edition 1-1

X.400 PROGRAMMER'S GUIDE

Overview of X.400
X.400 is a series of protocols that define a store-and-forward Message Handling System
(MHS) for the exchange of messages between computer network users. X.400 is
implemented in layer 7 of the OSI Reference Model (refer to Figure l-l).

Figure 1-2 illustrates the architectural layers of X.400.

Prime X.400 Application

X.400 API

layer 7 User Agent Layer

Message Transfer Layer

6 Presentation Layer

5 Session Layer

4 Transport layer

User Agent Interface

Transport Service Interface

Network Service Interface

FIGURE 1-2. The Architectural Layers of X.400

The user agent interface is a message based interface that enables an X.400 application to
send and receive messages via the user agent layer.

The X.400 Model
The X.400 series of definitions and protocols define a logical network model to which all
X.400-compatible message handling systems must conform. The model comprises two types
of software process; Message Transfer Agents (MTAs), and User Agents (UAs).

MTAs are store-and-forward nodes on an X.400 network. They act as servers for the
exchange of messages across a network, cooperating with each other to ensure delivery.

1-2 First Edition

INTRODUCTION

They act as intermediaries between UAs to determine destinations, control routing, deliver
messages, and signal errors.

UAs provide the link between users and MTAs. They interact with the sender, construct
messages for submittal to MTAs, and display the messages to recipients at a destination
node. UAs are implemented by mail applications.

The Prime X.400 Model
In accordance with the X.400 model, Prime X.400 comprises MTAs, that act as store-and-
forward nodes for the exchange of messages across a network, and UAs, that interface with
users to provide a Message Transfer Service (MTS). Figure 1-3 illustrates the main
components of the Prime X.400 logical network.

User Agent

X.400 Application X.400 Application

Prime's X.400 API X.400 API

X.400 Server
(MTA)

Network of MTAs

FIGURE 1-3. The Prime X.400 Logical Network

Prime X.400 UAs are implemented by X.400 applications, which use the services provided
by the Application Programming Interface (API).

The Prime X.400 API is a set of library calls (subroutines) that:

• Establish a communication path to a Prime X.400 server process

• Establish a Prime X.400 session

First Edition 1-3

X.400 PROGRAMMER'S GUIDE

• Allocate storage and initialize a message envelope data structure or message header data
structure

• Release storage for the message envelope data structure or message header data
structure

• Add fields to the message envelope data structure or message header data structure

• Send interpersonal messages using message envelope data structures and message header
data structures

• Request that incoming messages, delivery notifications, and receipt notifications be read

• Fetch individual fields from message envelope data structures and message header data
structures

• Action receipt of mail

• Terminate a Prime X.400 session

• Terminate a communication path to a Prime X.400 server process

• Convert X.409-encoded IA5 text body files to Prime ECS, and converts Prime ECS text
files to X.409-encoded IA5 text body files

• Convert a Prime ECS character string to a T.61 character string, and converts a T.61
character string to a Prime ECS character string

1 - 4 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

This chapter introduces Prime X.400 concepts, describes the types of message available to
User Agents (UAs) and Gateways, and describes how a user programs the Prime X.400 API
to construct, send, and receive messages correctly.

Prime X.400 Concepts
This section introduces some Prime X.400 user agent, and gateway concepts.

Prime X.400 User Agent
An X.400 application (user agent) can establish multiple Prime X.400 sessions on a single
communication path. On each session, the X.400 application can send and receive mail on
behalf of a specific user that matches the configured address space in Prime's X.400
configuration file.

Prime X.400 Gateway
A gateway establishes a single Prime X.400 communication path and session. It uses this
session to send and receive mail for multiple O/R addresses that match the configured
address space for the gateway in Prime's X.400 configuration file.

F i r s t E d i t i o n 2 - 1

X.400 PROGRAMMER'S GUIDE

X.400 Message Types for User Agents
The X.400 protocol provides for the following types of message for user agents:

• IPM Message

• Receipt Notification

• Delivery Notification

User agents can generate and receive IPM messages and receipt notifications, but can only
receive delivery indications.

M e s s a g e Ty p e F u n c t i o n

IPM Message Submission (IPMMS)
Interpersonal messages are transmitted over the message handling
system to the recipients with an IPM message submission.

IPM Message Receipt (IPMMR)
Interpersonal messages transmitted over the message handling
system are received by the recipient with an IPM message receipt.

Receipt Notification (RN) Notification of the receipt of an interpersonal message is sent to
the originator by the recipient with a receipt notification.

Receipt Notification Receipt (RNR)
A receipt notification sent by the recipient of an interpersonal
message to the originator, is received by the originator with a
receipt notification receipt.

Delivery Notification (DN) Delivery of a message over the message handling system, to the
recipient Message Transfer Agent (MTA), is confirmed to the
originator with a delivery notification.

Note
X.400 message types for user agents are abbreviated in the table column headings
later in this chapter.

X.400 Message Types for Gateways
The X.400 protocol provides for the following types of message for gateways:

• IPM Message

• Receipt Notification

• Delivery Notification

2 - 2 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

• Probe

Gateways can generate probe messages, and can generate and receive IPM messages, receipt
notifications, and delivery notifications.

M e s s a g e Ty p e F u n c t i o n

Delivery Notification Submission (DNS)
The recipient gateway of an incoming interpersonal message
requesting a delivery notification sends a delivery notification
submission to the originator.

Probe Submission (PS) A gateway can check the ability of the message handling system
to deliver an interpersonal message prior to actually sending the
message with a probe submission.

Delivery Notification for Probes (DNP)
A gateway is notified of the results of a probe with a delivery
notification.

Note
X.400 message types for gateways are abbreviated in the table column headings
later in this chapter.

Other message types are the same as for user agents.

Message Structure
A message comprises an envelope, header and bodies. Figure 2-1, illustrates a standard
message structure.

F i r s t E d i t i o n 2 - 3

X.400 PROGRAMMER'S GUIDE

X4 ENVELOPE

ptr = X4_read
X4 MSG

ORIGINATOR

X4 HEADER

FIGURE 2-1. Message Structure

Each of the data items, listed in the message envelope and message header data structures,
for each of the interpersonal message types, are described in API library routines; x4_get,
and x4_put in Chapter 3, PRIME™ X.400 API LIBRARY. The following sections define
the data items present in both the envelope and header data structures.

Message Envelope
The Message Envelope routes the body of the message from the originator to the recipients.
The X.400-defined PI protocol governs the flow of data between Message Transfer Agents,
and conveys information that is an envelope for the Message.

Table 2-1, lists the data items associated with the message envelope data structure for each
of the possible user agent interpersonal message types.

2-4 First Edition

f P R O G R A M M I N G U S I N G T H E P R I M E X . 4 0 0 A P I

r

r

Note

R_V RNR DN
Y Y Y
Y Y -
Y Y -
Y Y -
- Y Y
- Y Y
Y Y -
Y Y -
Y Y -
- - Y
- - Y
- Y Y

The message type abbreviations used in this and following tables, are defined at
the beginning of this chapter.

TABLE 2-1. Message Envelope Data Items for User Agent Message Types

IPMMS IPMMR
X 4 _ K _ C O N T E N T _ I D Y Y
X 4 _ K _ C O N T E N T _ T Y P E Y Y
X 4 _ K _ D E F E R R E D _ D E L I V E R Y Y Y
X 4 _ K _ E N C O D E D Y Y
X 4 _ K _ M P D U _ I D Y
X 4 _ K _ O R I G I N A T O R Y
X 4 _ _ K _ P E R _ M E S S A G E _ F L A G Y Y
X 4 _ K _ P R I O R I T Y Y Y
X 4 _ K _ R E C I P I E N T Y Y
X4__K_REPORTED_MESSAGE__D
X4__K_REPORTED_TRACE
X 4 _ K _ T R A C E Y

Table 2-2 lists the data items associated with the message envelope data structure, for the
additional gateway interpersonal message types.

TABLE 2-2. Message Envelope Data Items for Gateway Message Types

X4_K_CONTENT__D
X4_K_CONTENT_TYPE
X4_K_DEFERRED_DELIVERY
X4_K_ENCODED
X4_K__MPDU_ID
X4_K_ORIGINATOR
X4_K_PER_MESSAGE_FLAG
X4_K_PRIORITY
X4_K_RECIPIENT
X4_K_REPORTED_MESSAGE__ID
X4_K_REPORTED_TRACE
X4_K_TRACE
X 4 K L E N G T H

DNS PS DNP
Y Y Y
- Y Y

- Y Y
Y Y Y
Y Y Y
- Y Y

Y Y Y
Y - -
Y - -
Y Y Y
- Y Y

F i r s t E d i t i o n 2 - 5

X.400 PROGRAMMER'S GUIDE

Message Header
The Message Header is largely informative, and is not used by Prime X.400 for routing the
Message Body. The X.400-defined P2 protocol governs the flow of data between the User
Agent and the Message Transfer Agent, and conveys information that is a Header for the
Message.

Table 2-3, lists the data items associated with the message header data structure for each of
the possible user agent interpersonal message types.

TABLE 2-3. Message Header Data Items jfor Message Type
IPMMS IPMMR RN RNR

X4_K_ACTUAL_RECIPIENT
X4_K_AUTHORISE
X4_K_AUTO_FORWARD
X4_K__BCC
X4_K_BODY
X4_K_CC
X4_K_DELIVERY_TIME
X4_K_ENCODED
X4_K_EXPIRES
X4_K_FROM
X4_K_IMPORTANCE
X4_K_IN_REPLY__TO
X4_K_INTENDED_RECIPIENT
X4_K_NON-RECEIPT_INFO
X4_K_OBSOLETES
X4_K_RECEIPT_INFO
X4_K_REF
X4_K_REPLY_BY
X4_K_REPLY_TO
X4_K_SENSITIVITY
X4_K_SUBJECT
X4_K_TO
X4_K_XREF

Message Body
The Message Body is the basic text of the message encoded in X.409 format.
X.400 recommendations support the following Body Types:

Body Type

LASText

G3Fax

Description

ASCII.

The CCTTT

A sequence of bit strings, each representing a page of Group 3
facsimile information, encoded according to Recommendation T.4.

2-6 First Edition

TIFO

T T X

NationallyDefined

ForwardedlPMessage

SFD

TIF1

PROGRAMMING USING THE PRIME X.400 API

A document, of a structure that is defined in Recommendation
T.73, and that conforms to TIF (Text Interchange Format) 0
application rules.

Teletex.

Anything at all.

A Message contained within the body of another Message, to be
distributed to a further set of recipients. It optionally includes
the original Message Header information.

A simple formatable document.

A document, of a structure that is defined in Recommendation
T.73, and that conforms to TIF1 application rules.

Prime X.400 provides encoding and decoding routines supporting LASText body types.
Applications wishing to use other body types must perform their own body processing.

Data Structures
The file STRUCHJNS.C in the top-level directory SYSCOM contains the definition of all
the data structures used by Prime X.400 messages, and the keys that are used to identify
these structures.

There is one structure for each primitive component of a message. Each structure starts
with a standard substructure indicating the type of structure and whether it contains valid
data. This substructure is defined as:

typedef struct {
s h o r t i d ; / * D a t a s t r u c t u r e I D . * /
s h o r t r e v ; / • R e v i s i o n n u m b e r * /
short valdata; /* TRUE (non-zero) if structure contains valid data */

\
X4_STRUC;

The id is set to the key for the main structure. The rev is set to the value that indicates
the particular revision of the structure. The latest revision number is given by the key
X4_REV found in the file STRUCHJNS.C in the top-level directory SYSCOM. The
valdata is a boolean value where 0 represents FALSE, and any other value represents
TRUE. This is set to TRUE if the main structure contains valid data.

First Edition 2-7

X.400 PROGRAMMER'S GUIDE

Consider the following example primitive data structure, which is the priority indication for
a message:

typedef s t ruct \
X4_STRUC struc;
s h o r t v a l u e ;

\
X4_PRI0RITY;

The structid would be set to X4_ID_PRIORITY, and strucrev to X4_REV. If
struct.valdata is non-zero, then value contains the priority of a message. A default priority
message would be indicated by the absence of an X4_PR10RITY structure in the message,
or a structure present with the struct.valdata field set FALSE.

The more complex message components comprise structures containing these primitive data
structures, and lists of structures. For example, the standard attributes of an O/R name are
specified by the following structure:

typedef struct \
X4_STRUC struc;
X4_COUNTRYNAME cname; /♦ optional */
X4_ADMD admd; /• optional »/
X4_X121 x121; /* optional */
X4_TERM term; /* optional */
X4_PRMD prmd; /* optional */
X4_0RGNAME orgname; /* optional */
X4_UNIQUEUAID uaid; /* optional */
X4_NAME name; /* optional */
X4R_0RGUNIT orgunit; /* optional */

\
X4_STDATT;

The struct is the standard header describing the attribute structure. The following are all
primitive data structures; cname, admd, xl21, term, prmd, orname, uaid, and name. The
special structure orgunit defines the root of a list of organization unit primitive structures.
Prime X.400 provides routines for manipulating the elements of this list; x4 enchain adds a
primitive structure to a list; x4_find locates a particular entry in a list. The API routine
x4 get can be used to retrieve successive elements of a list.

Prime X.400 data structures can be initialized (all valdata fields set to FALSE) using the
routine x4 init. They can be dynamically allocated and initialized using the routine
x4 alloc.

An X.400 message is built by adding Prime X.400 data structures to a message header and
envelope (Refer to Appendix B, EXAMPLE APPLICATION PROGRAM TO SEND A
MESSAGE). This operation is performed using x4_put. When reading a message, the
elements of the envelope and header are extracted using the routine x4 get. Repetitive

2 - 8 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

calls of x4_get returns the same structure for nonlist items, and successive list elements for
list structures.

Note
When using x4_get to process a list, a NULL pointer is returned and an
X4_ERR_END_OF__LIST error raised when the end of the list is reached.
This error must be cleared using x4_clear before any further API routines are
made. The process of scanning a list using x4_get also changes pointers within
the list. If a second pass of the list is required, you should use x4_find to
reset these pointers to the beginning of the list.

Two primitive data structures X4_SUBJECT, and X4_FREEFORMNAME represent the
subject of a mail item, and the free-form name of a mail user respectively. The data
element in these structures is a character string. This character string is M a standard
Prime ECS string, but is encoded according to Prime's implementation of T.61 (the most
significant bit is the reverse of the standard T.61 encoding). Two API library routines are
provided to convert this string from Prime ECS to T.61, and from T.61 to Prime ECS
(refer to Chapter 3, PRIME X.400 API LIBRARY, routines x4_enct61 and x4_dect6l).

Using the Prime X.400 API Routines
Prime X.400 is an implementation of the X.400 OSI message handling system, and includes
a series of thirty API library routines. These routines are listed and described in Chapter
3, PRIME X.400 API LIBRARY.

The API library routines are provided to help the programmer create a user application
program, that interactively sends and receives messages.

Each of the following subsections explain the Prime X.400 API routines, with examples of
their execution in a typical user application program.

Error Handling
Some API routines return error codes as their results, others return NULL pointers indicating
an error. In each case, full details of the error can be obtained by executing the x4_error
API library routine. For example:

i f (x 4 _ e r r o r (4 e r r o r , ^ q u a l i fi e r))
p r i n t f (" E r r o r X d Q u a l i fi e r % d . \ n " . e r r o r, q u a l i fi e r) ;

The two parameters error, and qualifier, contain keys indicating the error that has occurred.
The values of error are defined in the file X4_ERROR.H.INS.C. The qualifier parameter
contains a key, the value of which depends on the value of error.

F i r s t E d i t i o n 2 - 9

X.400 PROGRAMMERS GUIDE

Errors can be cleared using API library routine x4__clear:

x4_cJear() ;

The API library routine x4_clear sets the two parameters error and qualifier in x4_error
to zero.

Once an error has occurred, all subsequently called API routines return the same error, until
it has been cleared using x4__clear.

Refer to Appendix C, X.400 API LIBRARY ROUTINE RETURN VALUES, for a list of the
return values produced by the API library routines.

Establishing a Communication Path to a Prime X.400 Server
To communicate with Prime X.400, the user application program must establish an Inter
Server Communication (ISC) session with the Prime X.400 server. This is achieved using
the x4_open_uai API library- routine

ptr~x4_open_uai("", 1);

Note
A gateway application would use the x4_open_gwi routine to establish an ISC
session with the Prime X.400 server.

The arguments to x4__open_uai are server_node (char *), and retired (int). The argument
retired is present to maintain compatibility with previous versions of the API. Its value is
not used.

To terminate an ISC communication session, the API library routine x4__close must be
called:

code = x4_close();

code is an integer value, where 0 indicates that the termination was successful, and a
nonzero value indicates an error (which can be explained using API library routine
x4_error).

2 - 1 0 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

Establishing a Prime X.400 Session
When a communication path to a Prime X.400 server has been successfully established, the
user application program, connects to one or more user agents (depending upon the
parameter). In order to send and receive messages on behalf of a user, the user application
program must first establish a session to the Prime X.400 server. This is achieved using
API library routine x4__logon:

pid = (X4_MSG *) x4_logon(user_name, mail_directory, mode);

The pointer pid, points to a structure of type X4_MSG. After a successful logon, this
structure contains the number of outstanding messages waiting to be read. The pointer
must be given as input to other API routines. When executing x4_logon, Prime X.400
searches the servers configuration table for a match against the user_name (char *). The
argument mail_directory (char *) is the name of a user directory, or sub directory, where
messages can be sent to, or received from. The argument mode (int), can be X4_SEND,
X4_RECEIVE, or both (logical OR). The API library routine x4__logoff is used to
terminate a Prime X.400 session started by x4_logon:

code = x4_logoff(pid);

The argument pid, is the same pointer received from x4__logon. code (int) defines the
success or failure of the Prime X.400 session termination.

Reading Data
Incoming messages are received from Prime X.400 using the API library routine x4_read:

msg_ptr = (X4_MSG *) x4_read(300000) ;

The pointer msg_ptr references a structure of type X4_MSG which contains information
on the message types, and pointers to the header and envelope data structures. Message
types can be; interpersonal messages, delivery reports, or replies (each requiring separate
treatment). The argument to x4_read is a wait period, specified in milliseconds.

Retrieving Information
Once a message has been received the information in it can be retrieved. This information
will be data items such as where the message came from, who sent it, what type of
message it is, and so on; each parameter requiring special attention depending on validation
fields. Information is retrieved using the API library routine x4_get, which returns a
pointer to various structures that depend on the value of the key.

F i r s t E d i t i o n 2 - 7 7

X.400 PROGRAMMER'S GUIDE

The arguments to x4_get are the pointer to the envelope or header (from x4_read), and a
key indicating the item required. The routine x4_get returns a pointer to a declared
structure. In the example below, the recipient is being extracted from the envelope. The
returned structure has valdata (int) set to 1 if there is valid data in the string. In the
example, the user application program would print 'To: ", the recipients first name (or
") and then the last name (or " ")•

x4_P1Rec ip ien t » rec ip i en t ;

recipient = (x4_P1Recipient *) x4_get(env_ptr, X4_RECIPIENT);
if (recipient 1= NULL)

pr int f (" \nTo: %s %s " ,
(r e c i p i e n t - > o r n a m e . s t d a t t . n a m e . f o r n a m e . s t r u e . v a l d a t a) ?

r e c i p i e n t - > o r n a m e . s t d a t t . n a m e . f o r n a m e . s t r i n g : " \ " \ " " ,
(rec i pi ent->orname.stdat t.name.surname.st rue.vaI data) ?

r e c i p i e n t - > o r n a m e . s t d a t t . n a m e . s u r n a m e . s t r i n g : " \ " \ " ") l

The routine x4_get may return linked lists of information in the previous, and next
standard formats, particularly when multiple occurrences are permitted (as for when there
are multiple recipients).

Decoding and Encoding Files
At this stage in the user application program when an interpersonal message containing LA5
text has been received, the X.409-encoded IA5 text body file should be decoded to a Prime
ECS (Extended Character Set) file. This is achieved using the API library routine
x4 decia5:

x4_decia5(dest, sre);

This routine decodes the body file accessed by the file pointer sre, and saves the decoded
contents in the file accessed by the file pointer dest.

Accepting or Rejecting Mail
If decoding and copy was successful, the application should accept the message through the
API library routine x4__accept, which deletes the message from Prime X.400's reliable
transfer store.

x 4 _ a c c e p t (p i d) ;

2 _ j 2 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

If the copy is not successful, API library routine x4_reject is called:

x4_reject(pid);

In both API library routines, the argument pid is received from x4_logon, pointing to the
structure X4_MSG.

Sending a Message
Sending a message is accomplished in a similar manner to receive:

Encode using x4__encia5, put data items into header and envelope using x4_put, and send
using x4_send.

Encoding a Prime ECS file to an X.409-encoded 1A5 text body file is achieved using API
library routine x4_encia5:

x4_encia5(dest, sre);

This routine reads the file accessed by the file pointer sre, then writes an X.409-encoded
IA5 text body to the file accessed by the file pointer dest.

Terminating Connections
API routine x4_logoff is used to disconnect from a particular user agent. API routine
x4_close terminates the communication path to the Prime X.400 server.

Handling User Agent Messages with the API
IPM Message Submission
The API routine x4_send is used to submit an IPM message.

An X.400 application, having established a communication path to a Prime X.400 server
process, and a Prime X.400 session to a user, uses the X.400 API library routine x4__send to
send a message over the message handling system (the message is submitted to Prime X.400
using information stored in the nominated envelope data structure, and header data
structure).

F i r s t E d i t i o n 2 - 7 ?

X.400 PROGRAMMER'S GUIDE

The following API library routines are used to send data over the message handling system:

x4_open_uai(server_node, retired)
x4_logon(user_name, directory, mode)
x4_put(struct, key, arg) /* To build an IPM message */
x4_send(logon_ptr, envelope, header)

This IPM message submission sequence can be terminated by ending the Prime X.400 session,
using x4_logoff, then closing the communication path to the Prime X.400 server process,
using x4 close.

IPM Message Receipt
The API routine x4__read is used to check for an IPM message receipt.

An X.400 application, having established a communication path to a Prime X.400 server
process, and a Prime X.400 session to a user, uses the X.400 API library routine x4__read to
wait for, and read, an incoming interpersonal message.

When the application has finished processing the mail, the API library routine x4_accept or
x4__reject must be called to accept, or reject respectively, responsibility for the mail. In
either case the message is deleted from the Prime X.400 reliable transfer store.

If the recipient X.400 application terminates the Prime X.400 session, using x4__logoff
without calling x4_accept or x4_reject, Prime X.400 saves the message, and attempts to
deliver it the next time the user establishes a Prime X.400 session, and calls x4__read.

Individual data fields within a message can be retrieved or added, at any time during mail
processing, by calls to x4__get, or x4__put respectively. Once a message has been accepted,
or rejected, the recipient X.400 application can call x4_read to wait for any other incoming
messages.

The recipient X.400 application can reply to a message that requests receipt notification with
x4__reply, prior to accepting or rejecting the message, or terminating the Prime X.400
session.

The following API library routines are used to read data transmitted over the message
handling system:

x4 open_uai(server node, retired)
x4_logon(user_name, directory, mode)
x4__read(wait)
x4_get(struct, key)/x4_put(struct, key, arg)
x4_accept(logon_ptr)/x4_reject(logon_ptr)/x4_logoff(logon__ptr)

2 - 2 4 F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

Receipt Notification
The API routine x4__reply is used to generate a receipt notification.

If the originator of a message requests a reply, the recipient X.400 application must build a
message and call x4_reply, which sends the receipt notification to the originating X.400
application. A receipt notification can be made prior to the user accepting or rejecting the
message after x4__read, or after the message has been accepted, and, before another call to
x4 read.

The following API library routines are used to build a receipt notification to data
transmitted over the message handling system:

x4_open__uai(server__node, retired)
x4__logon(user_name, directory, mode)
x4_read(wait)
x4_get(struct, key)/x4_put(struct, key, arg) /* To build a receipt notification */
x4_reply(logon_ptr, envelope, header)
x4_accept(logon_ptr)/x4_reject(logon__ptr)/x4_logoff(logon__ptr)

Receipt Notification Receipt
The API routine x4_read is used to check for a receipt notification receipt.

An X.400 application, having sent a message requesting a receipt notification, at some time
later, calls x4_read to read the receipt from Prime X.400. The application can use x4_get
to retrieve such data items as X4_K_ACTUAL_RECIPIENT, that indicate who sent the
receipt notification. The reply indication must be accepted or rejected as with IPM message
receipts.

The following API library routines are used to read a receipt notification to data
transmitted over the message handling system:

x4__open_uai(server_node, retired)
x4_logon(user_name, directory, mode)
x4_read(wait)
x4__get(struct, key)/x4_put(struct, key, arg)
x4__accept(logon_ptr)/x4_reject(logon_ptr)/x4_logoff(logon_ptr)

Delivery Notification
The API routine x4__read is used to check for a delivery notification.

An X.400 application, having sent a message requesting a delivery notification, at some time
later, calls _.4_read to read the delivery notification.

F i r s t E d i t i o n « _ . -

X.400 PROGRAMMERS GUIDE

The application can use x4__get to retrieve such data items as X4_K__TRACE, that
indicate the passage of the message. The delivery notification must be accepted or rejected
as with IPM message receipts.

The following API library routines are used to read a delivery notification:

x4_open__uai(server__node, retired)
x4_logon(user_name, directory, mode)
x4 read(wait)
x4_get(struct, key)/x4_put(struct, key, arg)
x4_accept(logon_ptr)/x4_reject(logon_ptr)/x4_logoff(logon_ptr)

Handling Gateway Messages with the API
The message types available to gateways, with the exception of delivery notification
submission, probe submission, and delivery notification for probes, are the same as the
message types available to user agents.

Delivery Notification Submission
The API routine x4_drnotify is used to generate a delivery notification.

If the originator of a message requests a delivery notification, the recipient gateway calls
x4__drnotify which sends a delivery notification to the originator.

The following API library routines are called when sending a delivery notification:

x4__open gwi(server__node)
x4_logon(user_name, directory, mode)
x4__read(wait)
x4__put(struct, key, arg) /* To build a delivery notification */
x4__drnotify(logon_ptr, envelope)

Probe Submission
The API routine x4_probe is used by a gateway to generate a probe.

If a gateway wishes to send a large message, it is wise to send a probe first to check that
the recipient MTA is accepting messages.

Having sent a probe submission and received a positive delivery notification, it is then
possible for the gateway application to send the message over the message handling system.
However, delivery is not guaranteed, even if the delivery notification is positive.

2 _ i £ F i r s t E d i t i o n

PROGRAMMING USING THE PRIME X.400 API

The following API library routines are used when sending probes:

x4_open_gwi(server_node)
x4 logon(user name, directory, mode)
x4_put(struct, key, arg) /* To build a probe */
x4_probe(envelope)

Delivery Notification for Probes
The API routine x4 read is used to check for a delivery notification.

A gateway application, having sent a probe, at some time later, calls x4 read to read the
delivery notification from Prime X.400 indicating the validity of the X.400 route. The
application can use x4 get to retrieve such data items as X4 K TRACE, that indicate the
passage of the message. The delivery notification must be accepted or rejected as with IPM
message receipts.

The following API library routines are used to read a delivery notification for probes:

x4 open gwi(server node)
x4 logon(user_name, directory, mode)
x4 read(wait)
x4 get(struct, key)
x4 accept(logon ptr)/x4 rejectdogon ptr)/x4 logoff (logon ptr)

F i r s t E d i t i o n 2 - 1 7

PRIME X.400 API LIBRARY

^ I n t r o d u c t i o n
This chapter lists all the Prime X.400 library subroutines. Each section describes the
function, C syntax, purpose, and values returned for the subroutine.

If the user wishes to use PRIMOS® file units rather than C file pointers with the
subroutines, refer to Appendix A, NON-C SYNTAX API LIBRARY ROUTINES.

r

F i r s t E d i t i o n , ,

X.400 PROGRAMMER'S GUIDE

Summary
x4 accept

x4__alloc

x4_clear

x4 close

x4__copy

x4_decia5

x4__dect61

x4_drnot i fy

x4 dump

x4_enchain

x4__encia5

x4 enct61

x4 error

x4__find

x4 get

x4_getgdi

x4 getmta

x4_ in i t

x4_k i l l

x4_logoff

x4 logon

x4 open gwi

x4 open uai

of Routines
Accepts responsibility for the incoming message

Allocates and initializes a Prime X.400 data structure

Clears a Prime X.400 error condition

Terminates a communication path to a Prime X.400 server process

Copies a Prime X.400 data structure

Converts an X.409-encoded IA5 text file to Prime ECS

Converts a T.61 character string to a Prime ECS character string

Sends a delivery notification from a gateway

Produces a formatted diagnostic print of a Prime X.400 data structure

Adds a record to the end of a Prime X.400 linked list

Converts a Prime ECS text file to X.409-encoded IA5 text

Converts a Prime ECS character string to a T.61 character string

Returns the current error status code and qualifier

Locates items within a list data structure

Returns the address of a data item from a nominated data structure

Returns the MTA global domain identifier

Returns the MTA name

Initializes a Prime X.400 data structure

Releases storage for all items in a list data structure

Terminates a Prime X.400 session

Establishes a Prime X.400 session

Establishes a communication path to a Prime X.400 server for use by a
gateway

Establishes a communication path to a Prime X.400 server for use by a
user

3-2 First Edition

PRIME X.400 API LIBRARY

r

r

x4 probe

x4_put

x4_read

x4 reject

x4 release

x4_reply

x4 send

Sends a probe from a gateway

Adds a data item to a Prime X.400 data structure

Initiates a read of an awaiting message

Rejects responsibility for the incoming message

Releases storage for a Prime X.400 data structure

Sends a message reply of type reply request

Sends a message of type data request

X l ^ _2>ou^
c_o_3k Os/w X^CO SXruudtiuwr \t> ex ~& le.f

i<\fc; Klf-scv^. tff ' «-brux}

x If- testers £«sVrscei a. .soux* X^OO ^VTruxtu*-*. -frv*^ c_ £U_

First Edition 3-3

X.400 PROGRAMMERS GUIDE

X4_ACCEPT

Function

Accepts responsibility for the last message read by x4__read, for a specified Prime
X.400 logon session.

This routine and the API library routine x4_reject, are used to accept or reject mail.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4_accept(logon_ptr)

char *logon_ptr;

Description
The x4__accept call acknowledges that the X.400 application has successfully handled
the last incoming message for the specified Prime X.400 logon session (logon_ptr), and
that the message can be deleted from the Prime X.400 reliable transfer store.

Prime X.400 deletes the stored message.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t i on was success fu l .

X4_ERR__ISC__ERR An Inter Server Communication (ISC) error has occurred.
The error qualifier contains the ISC error code.

X4_ERR__NO_READ The user does not have an unanswered x4_read request.

X4_ERR_NOT_OPEN The user does not have a session open to Prime X.400.

X4_ERR_SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

0 A F i r s t E d i t i o n3-4

PRIME X.400 API LIBRARY

X4_ALLOC

Function
Allocates and initializes a Prime X.400 data structure.

C Syntax
#include <x4 struc.h>

#include <x4_error.h>

char *x4_alloc(struc_id, version)

int struc_id;
int version;

Description
The x4_alloc call returns a pointer to an initialized Prime X.400 data structure. The
version number must be X4__REV.

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

X4_ERR_NO_RESOURCE
There were insufficient resources to allocate the data
structure. The error qualifier contains the data structure ID.

F i r s t E d i t i o n a 5

X.400 PROGRAMMER'S GUIDE

X4_CLEAR

Function
Clears a Prime X.400 error condition.

This routine is used in error handling, with the API library routine x4_error.

C Syntax
#include <x4 struc.h>

#include <x4_error.h>

void x4_clear()

Description
The x4__clear call resets a Prime X.400 error condition. This routine must be called
after a Prime X.400 error has occurred, otherwise all succeeding Prime X.400 API
library calls return the same error.

Returns
The routine returns the following value:

V a l u e M e a n i n g

X4_OK The ope ra t i on was success fu l .

o _ £ F i r s t E d i t i o n

^ ~ P R I M E X . 4 0 0 A P I L I B R A R Y

^ X 4 _ C L O S E
Function

Terminates a communication path to a Prime X.400 server process.

C Syntax
#include <x4__struc.h>

#include <x4 error.h>

int x4__close()

^ ^ * D e s c r i p t i o n
The x4_close call terminates a previously opened communication path between a X.400
application and a Prime X.400 server.

Any logged-on Prime X.400 sessions are automatically logged off by this routine.

This routine has the opposite effect to x4_open_uai and x4_open_gwi API library
calls.

C Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4 OK The opera t ion was success fu l .

rX4_ERR_ISC_ERR An Inter Server Communication (ISC) error has occurred.
The error qualifier contains the ISC error code.

X4—ERR_NOT_OPEN The user does not have a communication path open to Prime
X.400.

F i r s t E d i t i o n , ,

X.400 PROGRAMMERS GUIDE

X4_OOPY

Function

Copies a Prime X.400 data structure.

C Syntax
#include <x4__struc.h>

#include <x4__error.h>

int x4_copy(strucl, struc2)

char *strucl;
char *struc2;

Description
The x4__copy call copies the contents of struc2 to struc 1.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t ion was success fu l .

X4_ERR_BAD_COPY struc2 is not the same type of data structure as struc 1.

X4_ERR__BAD_REV struc2 or struc 1 contains an invalid version ID.

X4__ERR_BAD_STRUC struc2 or struc 1 is an invalid data structure ID.

X4 ERR NO DATA struc2 does not contain data (valdata field set false).

3 _ g F i r s t E d i t i o n

PRIME X.400 API LIBRARY

^ X 4 _ D E C I A 5
Function

Decodes an X.409-encoded IA5 text body file into Prime ECS.

This routine and the API library routine x4__encia5, are used to decode, and encode
files.

C Syntax
#include <x4 struc.h>

#include <x4_error.h>

^ ^ i n t x 4 d e c i a 5 (d e s t , s r e)

FILE *dest;
FILE *src;

Description
The x4 decia5 call reads the open file accessed by the file pointer sre, and strips out
the X.409 encoding and converts the contents to Prime ECS. The result is written to

j the open file accessed by the file pointer dest.

If the user wishes to use PRIMOS file units rather than C file pointers with this call,
refer to Appendix A, NON-C SYNTAX API LIBRARY ROUTINES.

Returns
The routine returns one of the following values:

f V a l u e M e a n i n g

X4_OK The opera t i on was success fu l .

X4_ERR_EXIA5_STR X.409 IA5 string expected. The error qualifier contains the
type found.

X4_ERR_EXOCT_STR X.409 octet string expected. The error qualifier contains the
type found.

X4 ERR EXSEQ X.409 sequence expected. The error qualifier contains the
type found.

X4_ERR_EXSET X.409 set expected. The error qualifier contains the type
found.

F i r s t E d i t i o n 3 . 9

X.400 PROGRAMMERS GUIDE

X4_ERR_EXTAG_INT X.409 tagged integer expected. The error qualifier contains
the type found.

X4__ERR_FILE_ERR A file system error has occurred. The error qualifier
contains the PRIMOS error code. The C library variable
errno can also be set.

X4 ERRUXSIZE Unexpected X.409 size. The error qualifier contains the size
found.

ftls© >.(+- cWc <=fcy "r*>6H«tei^ -? firs
(+ -d«_ bVif ^^XscGP^ST- -?&$

3-10 First Edition

PRIME X.400 API LIBRARY

X4_DECT61

Function
Decodes a T.61 character string to a Prime ECS character string.

C Syntax
#include <x4 error.h>

int x4_dect6l(dest, sre)

char *dest;
char *src;

Description
The x4_dect61 call converts the character string given by sre from T.61 to a Prime
ECS character string in dest.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4 OK The operat ion was successfu l .

X4_ERR_INVAL_D__CHARS
The source string contains characters that cannot be
converted to Prime ECS.

F i r s t E d i t i o n ~ , .

X.400 PROGRAMMERS GUIDE

X4_DRN0TEFY

Function
Sends a delivery notification from a gateway.

C Syntax
#include <x4__struc.h>

#include <x4__error.h>

char *x4_drnotify<logon__ptr, envelope)

char *logon_ptr;
char *envelope;

Description
The x4__drnotify call sends a delivery notification in response to a previously received
message. This routine can only be used when the gateway interface is in use. The
routine returns a pointer to a static X4_MPDUSTRING data structure containing the
MPDU identifier assigned by Prime X.400.

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_BAD__STRUC An invalid data structure ID was provided.

X4_ERR_ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR_MDNP A mandatory descriptor is missing from the envelope data
structure provided. The error qualifier contains the structure
ID of the missing descriptor.

X4_ERR_NO_RESOURCE
Prime X.400 is unable to accept this request. The error
qualifier contains the reason for rejection: 1 = server
reconfiguring, 2 = invalid header or envelope, 3 = X.400
server error.

X4_ERR_NOT__GWI A communication path to a Prime X.400 server has been
established using the x4_open_uai call rather than
x4_open__gwi.

a , . F i r s t E d i t i o n

V P R I M E X . 4 0 0 A P I L I B R A R Y

J X4__ERR_NOT_OPEN The gateway does not have a session open to Prime X.400.

X4—ERR_SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

r

r

F i r s t E d i t i o n _ _ . «

X.400 PROGRAMMER'S GUIDE

X4_DUMP

Function
Produces a formatted diagnostic print of a Prime X.400 data structure.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4 dump(fp, struc)

FILE *fp;
char *struc;

Description
The x4__dump call produces a formatted listing of the specified Prime X.400 data
structure on the nominated open file unit.

If the user wishes to use PRIMOS file units with this call rather than C file pointers,
refer to Appendix A, NON-C SYNTAX API LIBRARY ROUTINES.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The ope ra t i on was success fu l .

X4 ERR__BAD_STRUC An invalid data structure ID was provided.

3 2 4 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_ENCHAIN

Function
Adds a Prime X.400 list data structure to the end of a linked list.

C Syntax
#include <x4 struc.h>

#include <x4 error.h>

int x4 enchain(root, list)

char *root;
char *list;

Description
The x4_enchain call adds a Prime X.400 list data structure to the end of the linked
list indicated by the Prime X.400 root data structure.

Returns
The routine returns the following value:

V a l u e M e a n i n g

X4__OK The operat ion was successfu l .

r
First Edition 3-15

X.400 PROGRAMMER'S GUIDE

X4_ENCIA5

Function
Encodes a Prime ECS text file as an X.409 encoded LA5 text body file.

This routine and the API library routine x4_decia5, are used to decode, and encode
files.

C Syntax
#include <x4_struc.h>

#include <x4 error.h>

int x4 encia5(dest, sre)

FILE *dest;
FILE *src;

Description
The x4 encia5 call reads the open file accessed by the file pointer sre, then writes an
X.409 encoded IA5 text body to the open file accessed by the file pointer dest.

If the user wishes to use PRIMOS file units rather than C file pointers with this call,
refer to Appendix A, NON-C SYNTAX API LIBRARY ROUTINES.

Returns
The routine returns the following value:

V a l u e M e a n i n g

X 4 _ O K T h e o p e r a t i o n w a s s u c c e s s f u l .

X4_ERR_FILE_ERR A file system error has occurred. The error qualifier
contains the PRIMOS error code. The C library variable
errno can also be set.

Ml . e^U4- . ^ tec* ■* -£_o6<_-S>

3 - J 6 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_ENCT61

Function
Encodes a Prime ECS character string to a T.61 character string.

C Syntax
#include <x4__error.h>

int x4_enct6l(dest, sre, maxlen)

char *dest;
char *src;
int maxlen;

Description
The x4_enct61 call converts the character string given by sre from Prime ECS to a
T.61 character string in dest. The input parameter maxlen gives the maximum
resulting T.61 string length allowed.

Note
A T.61 string can be twice as long as the source ECS string.

Returns
The routine returns one of the following values:

v < r t u e M e a n i n g

X4—OK The opera t ion was successfu l .

X4_ERR_INVALID_CHARS
The source string contains characters that cannot be
converted to T.61.

X4_ERR_TOO_LONG The resulting T.61 string is longer than the maximum
specified by maxlen.

First Edition
3-17

X.400 PROGRAMMER'S GUIDE

X4_ERROR

Function
Returns the current error status code and qualifier.

This routine and the API library routine x4__clear, are used in error handling.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4_error(error, qualifier)

int *error;
int *qualifier;

Description
The x4_error call returns the current error status code and qualifier.

Returns
The routine returns a non__zero (logical true) value if an error has occurred, or zero
(logical false) if no error has occurred.

First Edition3-18

PRIME X.400 API LIBRARY

X4_FIND

Function
Locates items within a list data structure.

C Syntax
#include <x4 struc.h>

#include <x4 error.h>

char *x4_find(root, key)

char *root;
int key;

Description
The x4_find call returns a pointer to an item within the list data structure indicated
by root.

Key may take the following values:

X4__K_FIRST Returns a pointer to the first item in the list

X4__K__LAST Returns a pointer to the last item in the list

X4__K_NEXT Returns a pointer to the next item in the list

X4_K__PREVIOUS Returns a pointer to the previous item in the list

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_BAD_KEY The user has specified an invalid key.

X4 ERR BAD REV An invalid data structure version was provided.

X4 ERR BAD STRUC The user has specified an invalid data structure ID.

X4_ERR_END_OF_LIST
There are no more items in this list.

X4_ERR_LIST_EMPTY There is no data item present for this list.

F i r s t E d i t i o n 3 - 1 9

X.400 PROGRAMMER'S GUIDE

X4_GET

Function
Returns a data item from a message envelope data structure or message header data
structure.

This routine is used to retrieve data.

C Syntax
#include <x4_struc.h>

#include <x4_keys.h>

#include <x4_error.h>

char *x4_get(struct, key)

char *struct;
int key;

Description
The x4__get call returns a pointer to an individual field within the message header
data structure, or message envelope data structure, depending upon the type indicated by
struct.

The following data items are found in the message envelope data structure, depending
on the value of key:

I t e m D e s c r i p t i o n

X4_K_CONTENT_ID The UA Content Identifier, provided by the UA and
carried back to the originator (in a delivery indication) by
the message transfer layer. It consists of a data structure of
type X4_UACONTENTID. This parameter is limited to
16 characters in length.

X4_K_CONTENT_TYPE
A Content Type parameter, supplied by the originating UA,
which identifies the convention that governs the structure of
the contents. It consists of a data structure of type
X4_CONTENTTYPE. The only defined value is
X4_CT_P2, which identifies the P2 protocol for
interpersonal messaging (as specified in CCITT
recommendation X.420).

X4_K_DEFERRED_DELIVERY
A PI field that specifies the earliest time that the message

3 - 2 0 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4 K ENCODED

X4 K MPDU ID

can be delivered to the recipient,
structure of type X4 TIME.

It consists of a data

The encoding format used in the body of the message. It
consists of a data structure of type X4_ENCODED.

The Message Protocol Data Unit Identifier, assigned by the
originator UA. It consists of a data structure of type
X4_MPDUID.

X4 K ORIGINATOR The PI originator name. It consists of a data structure of
type X4_ORNAME.

X4__K_PER_MESSAGE_FLAG
A PI options field which applies to all recipients of the
message. The field consists of an X4_PERMESSAGEFLAG
t y p e d a t a s t r u c t u r e . T h i s c a n b e
X4_PMF_DlSCLOSERECIPIENTS (that indicates
whether the O/R names of all recipients should be indicated
to each recipient UA when the message is delivered), or
X4_PMF_CONVERSIONPROHIBITED (that indicates
whether the conversion is to be inhibited), or
X4_PMF_ALTERNATERECIPIENT ALLOWED (that
indicates whether the alternate recipient allowed service is
requested), or X 4 _PMF_CO NT ENT RETURN REQUEST
(that indicates whether the content of the message is to be
returned with any non-delivery notification).

X4_K_PRIORITY

X4_K_RECIPIENT

The PI priority field. It consists of a data structure of type
X4_PRIORITY, and can be X4_P_NORMAL,
X4_P_NONURGENT, or X4_P_URGENT.

A PI field that specifies the names of recipients for the
message. This information is used for routing the message.
It can occur more than once, and consists of a data structure
of type X4_P1RECIPIENT. If the envelope is a delivery
notification, then this field describes the reported recipients
of the original message, and consists of a list of data
structures of type X4_REPORTEDPlRECIPIENT.

X4_K_REPORTED_MPDU_ID
The message protocol data unit identifier of the message that
is the subject of a Delivery Notification. It consists of a
data structure of type X4_MPDUID.

X4__K_REPORTED_TRACE
Trace information associated with a message which is the
subject of a Delivery Notification. It consists of a data
structure of type X4_TRACE.

First Edition 3-21

X.400 PROGRAMMER'S GUIDE

X4_K__TRACE Information (list of MTAs) of the passage of a message
through the message transfer layer. It consists of a data
structure of type X4_TRACE.

The following data items are found in the message header data structure, depending on
the value of key:

I t e m D e s c r i p t i o n

X4_K_ACTUAL_RECIPIENT
A P2 field that is returned in a Receipt Notification
Receipt, and that indicates the actual recipient who received
the message. It consists of a data structure of type
X4_ORDESCRIPTOR.

X4_K_AUTHORISE An optional P2 field that describes the user who authorized
the message to be sent. There may be more than one
authorizing user specified. The field consists of a data
structure of type X4_ORDESCRIPTOR, and is not
validated by Prime X.400.

X4_K_AUTO_FORWARD
Indicates that the message has been redirected by the original
recipient message transfer agent. It consists of a data
structure of type X4_AUTOFORWARD.

X4_K__BCC A P2 descriptor that identifies a blind copy recipient. That
is, a recipient whose name is not disclosed to primary or
copy recipients. It can occur once, several times, or not at
all. It consists of the same fields as the primary recipient.

X4_K_BODY A field that describes the type of each body part within the
file body. If a body part is of type ForwardedIPMessage,
then it contains a reference to a separate message header
data structure for the forwarded message. Such enclosures
can be repeated.

X4__K_CC A P2 descriptor that identifies a copy recipient of the X.400
message. It can occur once, several times, or not at all. It
consists of the same fields as the primary recipient.

X4_K_DELIVERY_TIME
A field that provides the message delivery time at the
forwarding agent, if the body part is of type
ForwardedIP Message. This field is optional, and consists of
a data structure of type X4_TIME.

X4__K_ENCODED A field that indicates the converted encoded information
types of the message. It consists of a data structure of type
X4 ENCODED.

2 _ 2 2 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_K_EXPIRES

X4_K_FR0M

A P2 field that indicates the date and time by which the
originator considers the message to be no longer valid, or
useful. It is optional, and consists of a data structure of
type X4_TIME.

A P2 field that identifies the user that submitted the X.400
message. It consists of a data structure of type
X4_ORDESCRIPTOR, and is for information only. Prime
X.400 does not validate this field.

X4_K_IMPORTANCE A P2 descriptor that gives an indication of the importance
of the message being sent. It consists of a data structure of
type X4_IMPORT ANCE. Allowable values are
X 4 _ I M P _ L O W , X 4 _ I M P _ N O R M A L o r
X4_IMP_HIGH. If not present, a default value of
X4_IMP_NORMAL is supplied.

X4_K___N_REPLY__TO A P2 field that identifies a previous message to which this
message is a reply. It is optional and consists of a data
structure of type X4_REF.

X4_K_INTENDED_RECIPIENT
A P2 field that is returned in a Receipt Notification
Receipt, and that indicates the intended recipient for the
Message (where this is different to the actual recipient). It
consists of a data structure of type X4_ORDESCRIPTOR.

X4_K_NON_RECEIPT_INFO
A field that provides information regarding nonreceipt of the
message by the recipient UA. It consists of a data structure
of type X4_NONRECEIPTINFO.

X4 K OBSOLETES

X4_K_RECEIPT_INFO

X4 K REF

X4_K_REPLY_BY

X4_K_REPLY_TO

A P2 descriptor that identifies any previous messages that
are made obsolete by this message. It can occur once,
several times, or not at all. It consists of a data structure
of type X4_REF.

A field that provides information regarding receipt of the
message by the recipient UA. It consists of a data structure
of type X4_RECEIPTINFO.

A P2 field that contains the message protocol data unit
identifier, supplied by the originating X.400 application. It
consists of a data structure of type X4 REF.

A P2 descriptor that gives the date and time by which a
reply to this message should be sent. It is optional, and
consists of a data structure of type X4 TIME.

A P2 descriptor that gives the names of users to whom the
reply should be sent. It can occur once, several times, or

First Edition 3-23

X.400 PROGRAMMERS GUIDE

X4_K_SENSITIVITY

X4_K_SUBJECT

not at all. It consists of an X4_ORDESCRIPTORt which
must contain an X4_ORNAME.

A P2 field that gives an indication of the sensitivity of the
message being sent. It consists of a data structure of type
X 4 _ S E N S I T I V I T Y. A l l o w a b l e v a l u e s a r e
X 4 _ S E N _ P E R S O N A L , X 4 _ S E N _ P R T VAT E o r
X4_SEN_COMPANYCONFIDENTIAL. If not present, a
value of X4_SEN_PERSONAL is supplied.

A P2 descriptor that describes the subject of the X.400
message being sent. It can occur once, several times, or not
at all. It consists of a data structure of type
X4_SUBIECT.

X4_K__TO A P2 descriptor that identifies the primary recipient of the
message. It can occur more than once. It consists of a data
structure of type X4_RECIPIENT, which comprises an
X4_ORDESCRIPTOR, an X4_REPORT_REQUEST, and
a n X 4 _ R E P L Y _ R E Q U E S T . T h e
X4_REPORT_REQUEST enables the user to select receipt
notification, or nonreceipt notification, from the recipient UA.
The X4_REPLY_REQUEST enables the user to request the
recipient to acknowledge receipt by sending a reply.

X4_K_XREF A P2 descriptor that identifies any previous X.400 messages
that are cross referenced by this X.400 message. It can
occur once, several times, or not at all. It consists of a data
structure of type X4_REF.

The following keys are provided to enable access to the root structures in the header
data structure, and envelope data structure:

X4_K_ROOT_AUTHORISE
Accesses the root to the list of P2 authorize fields

X4 K ROOT BCC Accesses the root to the list of P2 BCC recipients

X4__K_ROOT_BODY Accesses the root to the list of X4_BODY structures, that
describe the type of each body part within the message

X4 K ROOT CC Accesses the root to the list of P2 CC recipients

X4_K_ROOT_OBSOLETES
Accesses the root to the list of X4 REF structures, which
identify the previous messages that have been made obsolete
by this message

X4_K_ROOT_RECIPIENT
A c c e s s e s t h e r o o t t o t h e l i s t o f
X4_REPORTEDPlRECIPIENT structures, that describe the
reported recipients of the original message

3-24 First Edition

PRIME X.400 API LIBRARY

X4_K_ROOT_REPLY_TO
Accesses the root to the list of X4_ORDESCRIPTOR
structures, that identify the users to which a reply should
be sent

X4_K_ROOT_REPORTED_TRACE
Accesses the root to the list of X4_TRACE structures, that
make up the intermediate trace list

X4__K_ROOT_TO Accesses the root to the list of P2 primary recipient lists

X4_K_ROOT__TRACE Accesses the root to the list of X4_TRACE structures

X4_K__ROOT__XREF Accesses the root to the list of X4_REF structures, that
identify which previous messages are cross referenced by this
one

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4__ERR_BAD__KEY The user has specified an invalid key.

X4_ERR_BAD_REV An invalid data structure version ID was provided.

X4_ERR__BAD_STRUC An invalid data structure ID was provided.

X4_ERR_END_OF_LIST
There are no further data items of the list type requested.

X4_ERR_LIST__EMPTY There is no data item present for the list type requested.

X4_ERR_NO_DATA There is no data item present of the type requested.

F i r s t E d i t i o n 3 - 2 5

X.400 PROGRAMMER'S GUIDE

X4_GETGDI

Function
Returns the MTA global domain identifier.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

char *x4_getgdi();

Description
This routine returns a pointer to a dynamically allocated X4_GLOBALDOMAINID
structure that contains the global domain identifier (Country, ADMD, and PRMD) of
the MTA to which there is an open session. Combined with the MPDUID String
returned by x4_send, the GDI gives the full MPDUID of a sent message.

It is the calling applications responsibility to free the allocated structure (using free)
when it is no longer required.

Returns
If the routine returns a NULL pointer, then x4__error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR__NOT__OPEN The user does not have a session open to Prime X.400.

X4_ERR__SYN__ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

X4_ERR__ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR_BAD_MESSAGE
An invalid message format has been received.

3 - 2 6 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

^ _ _ X 4 _ G E T M TA
Function

Returns the MTA name.

C Syntax
#include <x4__struc.h>

#include <x4_error.h>

char *x4 getmtaO;

Description
This routine returns a pointer to a static string containing the name of the MTA to
which there is an open session.

Returns
If the routine returns a NULL pointer, then x4__error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_NOT__OPEN The user does not have a session open to Prime X.400.

X4_ERR_SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

X4_ERR_ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR__BAD_MESSAGE
An invalid message format has been received.

F i r s t E d i t i o n 3 - 2 7

X.400 PROGRAMMERS GUIDE

X4__NTT

Function
Initializes a Prime X.400 data structure.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4__init(struc, key, version)

char *struc;
int key;
int version;

Description
The x4__init call initializes a Prime X.400 data structure of type struc. The value of
key qualifies the data structure, and is one of the X4_ID keys found in the
X4_STRUC.H.INS.C file in the top-level directory SYSCOM. The version must be
passed. The latest version which should be supplied in all normal circumstances, is
X4_REV which is held in the X4_STRUC.H.INS.C file in the top-level directory
SYSCOM. If the value of key is incorrect, the routine returns
X4_ERR_BAD_STRUC.

The content of individual fields can be added using the x4 put library call.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4__OK The operat ion was successfu l .

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

3 - 2 8 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_KILL

Function
Releases storage for all items in a list data structure.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4_kill(root)

char *root;

Description
The x4_kill call releases storage for all data items in a list data structure indicated by
root. The root data structure itself, is updated to indicate an empty list.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4 OK The operat ion was successfu l .

X4_ERR_BAD_STRUC The data structure provided was not a root data structure.

F i r s t E d i t i o n 3 - 2 9

X.400 PROGRAMMER'S GUIDE

X4_LOGOFF

Function
Disconnects a user session between an X.400 application, and a Prime X.400 server
process.

This routine and the API library routine x4_logon, are used in establishing, and
terminating, a Prime X.400 session.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4_logoff(logon_ptr)

char *logon_ptr;

Description
The x4_logoff call terminates a previously opened session between an X.400 application,
and Prime X.400 server process.

This routine has the opposite effect to the x4_logon API library call.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t i on was success fu l .

X4__ERR__ISC__ERR An Inter Server Communication (ISC) error has occurred.
The error qualifier contains the ISC error code.

X4_ERR_NOT_OPEN An ISC session was not open.

X4_ERR__SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

3 - 3 0 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_LOGON

Function
Establishes a user session between an X.400 application, and a Prime X.400 server
process.

This routine and the API library routine x4__logoff, are used in establishing, and
terminating, a Prime X.400 session.

C Syntax
#include <x4 struc.h>

#include <x4 keys.h>

#include <x4_error.h>

char *x4 logon(user name, directory, mode)

char *user name;
char *directory;
int mode;

Description
The x4_logon call establishes a user session between an X.400 application, and a Prime
X.400 server process. Prime X.400 searches the configuration file for a match against
the user_name. If the match is successful, the configuration file contains the X.400
ORAddress for this user name. This ORAddress is used as the PI originator field for
all transmitted messages from this user.

The x4 logon call returns a pointer to a Prime X.400 logon data structure (of type
X4_MSG). This pointer is used as an argument in subsequent API calls to identify
this Prime X.400 session. This structure contains a count of the number of mail items
waiting for the user to read.

The directory name provided is the destination location for incoming mail body parts,
and the default source location for outgoing mail body parts. If null, it defaults to a
sub-directory called X400_MA1L in the users' origin directory.

The mode can be X4_K_RECEIVE, X4__K_SEND, or both (logical OR).

F i r s t E d i t i o n 3 . 3]

X.400 PROGRAMMERS GUIDE

Returns
If the routine returns a null value, then x4__error returns one of the following values:

V a l u e M e a n i n g

X4_ERR_BAD_RESPONSE
An unrecognized message type from the Prime X.400 server.
The error qualifier contains the message type in question.

X4_ERR__ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR_LOGGED_ON The user is already logged on.

X4_ERR__NAC The user does not have access rights to this X.400 user
name.

X4_ERR_NO_RESOURCE
Prime X.400 has no resource available to support this user.

X4_ERR_NOT_OPEN An ISC session is not open.

X4_ERR_RECONFIGURING
The Prime X.400 server is reconfiguring.

X4_ERR_SYN__ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

X4__ERR_TERMINATED Prime X.400 has closed down.

X4_ERR_UNKNOWN_USER
The user name is not present in the configuration file being
used by Prime X.400.

3 - 3 2 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_OPEN_GWI

Function
Establishes a gateway communication path to a Prime X.400 server process.

This routine and the API library routine x4_close, are used to establish and terminate
a communication path to a Prime X.400 server.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

char *x4_open_gwi(server_node)

char *server node;

Description
The x4_open__gwi call establishes a communication path for gateways, between an
X.400 application and a Prime X.400 server on a specified processor node.

The argument server_node is the Primenet node name of the node where the server
resides, or NULL for the local node.

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR__OPEN The user already has a path open to Prime X.400.

X4_ERR_SYN__ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

X<f-<_"££- 3«P- a^T-M A^ovMfirk '■<>>-' • ^ I" o?<?^ _. .^._,e.v <v c^^ A .^
X&JC iS CW .fVt_vw. j_»Arv*al-e titCViUYy .

F i r s t E d i t i o n 3 - 3 3

X . 4 0 0 P R O G R A M M E R S G U I D E _ _

X 4 _ O P E N _ U A I ^

Function
Establishes a user communication path to a Prime X.400 server process.

This routine, and the API library routine x4_close, are used to establish and terminate
a communication path to a Prime X.400 server.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

c h a r * x 4 _ _ o p e n _ u a i (s e r v e r _ n o d e , r e t i r e d) " ^ ^

char *server_node;
int retired;

Description
The x4_open_uai call establishes a communication path for users, between an X.400
application and a Prime X.400 server on a specified processor node.

The argument retired is present to maintain compatibility with previous versions of the
API. Its value is not used.

The argument server node is the Primenet node name of the node where the server
resides, or NULL for the local node.

Returns
If the routine returns a null pointer, then x4_error returns one of the following ^^
values:

V a l u e M e a n i n g

X4 ERR ISC__ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR__OPEN The user already has a path open to Prime X.400.

X4_ERR__SYN__ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

3 - 3 4 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_PROBE

Function
Sends a message probe from a gateway.

C Syntax
#include <x4__struc.h>

#include <x4 error.h>

char *x4_probe(envelope)

char *envelope;

Description
The x4 probe call checks the validity of an X.400 route, using information previously
stored in a message envelope data structure, before sending a message. The routine
returns a pointer to the MPDU identifier structure (X4 MPDU ST RING) assigned by
Prime X.400.

This routine can only be called by a logged on gateway user.

Returns
If the routine returns a null pointer, then x4_error returns following value:

V a l u e M e a n i n g

X4 ERR NOT_OPEN The user does not have a session open to Prime X.400.

F i r s t E d i t i o n 3 . 3 5

X.400 PROGRAMMER'S GUIDE

X4_PUT

Function
Adds a data item to a message envelope data structure, or message header data
structure.

C Syntax
#include <x4_struc.h>

#include <x4_keys.h>

#include <x4_error.h>

int x4_put(struct, key, arg)

char *struct;
int key;
char *arg;

Description
The x4__put call adds the data item referenced by arg, to the message envelope data
structure, or message header data structure, referenced by struct.

The following data items are found in the message envelope data structure, depending
on the value of key:

I t e m D e s c r i p t i o n

X4_K_CONTENT_ID The UA Content Identifier, provided by the UA and
carried back to the originator (in a delivery notification) by
the message transfer layer. It consists of a data structure of
type X4_UACONTENT1D. This parameter is limited to
16 characters in length.

X4_K__CONTENT_TYPE
A Content Type parameter, supplied by the originating UA,
which identifies the convention that governs the structure of
the contents. It consists of a data structure of type
X4_CONTENTTYPE. The only defined value is
X4_CT_P2, which identifies the P2 protocol for
interpersonal messaging (as specified in CCITT
recommendation X.420).

X4_K__DEFERRED_DELIVERY
A PI field that specifies the earliest time that the message
can be delivered to the recipient. It consists of a data
structure of type X4JTIME.

? ~ s F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_K_ENCODED

X4_K_MPDU_ID

X4 K ORIGINATOR

The encoding format used in the body of the message. It
consists of a data structure of type X4_ENCODED.

The Message Protocol Data Unit Identifier, assigned by the
originator UA. It consists of a data structure of type
X4_MPDUID.

The PI originator name,
type X4_ORNAME.

It consists of a data structure of

X4_K_PER_MESSAGE_FLAG
A PI options field which applies to all recipients of the
message. The field consists of an X4_PERMESSAGEFLAG
t y p e d a t a s t r u c t u r e . T h i s c a n b e
X4 _PMF_DISCLOSERECIPIENTS (that indicates
whether the O/R names of all recipients should be indicated
to each recipient UA when the message is delivered), or
X4_PMF_CONVERSIONPROHIBITED (that indicates
whether the conversion is to be inhibited), or
X4_PMF_ALTERNATERECIPIENTALLOWED (that
indicates whether the alternate recipient allowed service is
requested), or X4_PMF_CO NT ENT RETURN REQUEST
(that indicates whether the content of the message is to be
returned with any non-delivery notification).

X4 K PRIORITY

X4 K RECIPIENT

The PI priority field. It consists of a data structure of type
X4_PRI0R1TY, and can be X4_P_NORMAL,
X4_P_NONURGENT, or X4_P_URGENT.

A PI field that specifies the names of recipients for the
message. This information is used for routing the message.
It can occur more than once, and consists of a data structure
of type X4_P1 RECIPIENT. If the envelope is a delivery
notification, then this field describes the reported recipients
of the original message, and consists of a list of data
structures of type X4_REP0RTEDP1RECIPIENT.

X4_K_REPORTED_MPDU_ID
The message protocol data unit identifier of the message that
is the subject of a Delivery Notification. It consists of a
data structure of type X4_MPDUID.

X4_K_REPORTED_TRACE
Trace information associated with a message which is the
subject of a Delivery Notification. It consists of a data
structure of type X4 TRACE.

X4_K__TRACE Information (list of MTAs) of the passage of a message
through the message transfer system. It consists of a data
structure of type X4_TRACE.

First Edition 3-37

X.400 PROGRAMMERS GUIDE

The following data items are found in the message header data structure, depending on
the value of key:

Item Description

X4_K_ACTUAL_RECIPIENT
A P2 field that is returned in a Receipt Notification
Receipt, and that indicates the actual recipient who received
the message. It consists of a data structure of type
X4_ORDESCRIPTOR.

X4_K AUTHORISE An optional P2 field that describes the user who authorized
the sending of the message. There may be more than one
authorizing user specified. The field consists of a data
structure of type X4_ORDESCRIPTOR, and is not
validated by Prime X.400.

X 4 K _ B C C A P2 descriptor that identifies a blind copy recipient. That
is, a recipient whose name is not disclosed to primary or
copy recipients. It can occur once, several times, or not at
all. It consists of the same fields as the primary recipient.

X4 K BODY

X4_K_CC

A field that describes the type of each body part within the
b o d y fi l e . I f t h e b o d y p a r t i s o f t y p e
ForwardedIP Message, then it contains a reference to a
separate message header data structure for the forwarded
message. Such enclosures can be repeated.

A P2 descriptor that identifies a copy recipient of the X.400
message. It can occur once, several times, or not at all. It
consists of the same fields as the primary recipient.

X4_K_DELIVERY__TIME

X4_K_ENCODED

A field that provides the message delivery time at the
forwarding agent, if the body part is of type
ForwardedIP Message. This field is optional, and consists of
a data structure of type X4_T1ME.

A field that indicates the converted encoded information
types of the message. It consists of a data structure of type
X4_ENCODED.

X4 KEXPIRES

X4 KFROM

A P2 field that indicates the date and time by which the
originator considers the message to be no longer valid and
useful. It is optional, and consists of a data structure of
type X4_TIME.

A P2 field that identifies the user that submitted the X.400
message. It consists of a data structure of type
X4_ORDESCRIPTOR, and is for information only. Prime
X.400 does not validate this field.

3-38 First Edition

PRIME X.400 API LIBRARY

X4_K__IMPORTANCE A P2 descriptor that gives an indication of the importance
of the message being sent. It consists of a data structure of
type X4_1MP0RT ANCE. Allowable values are
X 4 _ I M P _ L O W , X 4 _ I M P _ N O R M A L o r
X4_IMP_HIGH. If not present, a default value of
X4_IMP_NORMAL is supplied.

X4_K_IN_REPLY__TO A P2 field that identifies a previous message to which this
message is a reply. It is optional and consists of a data
structure of type X4_REF.

X4_K_INTENDED_RECIPIENT
A P2 field that is returned in a Receipt Notification
Receipt, and that indicates the intended recipient for the
Message (where this is different to the actual recipient). It
consists of a data structure of type X4_ORDESCRIPTOR.

X4_K_NON_RECEIPT_INFO
A field that provides information regarding nonreceipt of the
message by the recipient UA. It consists of a data structure
of type X4_NONRECEIPTINFO.

X4_K_OBSOLETES

X4_K_RECEIPT_INFO

A P2 descriptor that identifies any previous messages that
are made obsolete by this message. It can occur once,
several times, or not at all. It consists of a data structure
of type X4_REF.

A field that provides information regarding receipt of the
message by the recipient UA. It consists of a data structure
of type X4_RECEIPTINFO.

X4 K REF A P2 field that contains the interpersonal message identifier
supplied by the originating X.400 application. It consists of
a data structure of type X4_REF.

X4_K_REPLY_BY A P2 descriptor that gives the date and time by which a
reply to this message should be sent. It is optional, and
consists of a data structure of type X4 TIME.

X4 K REPLY_TO A P2 descriptor that gives the names of users to whom the
reply should be sent. It can occur once, several times, or
not at all. It consists of an X4_ORDESCRIPTOR, which
must contain an X4_ORNAME.

X4 KSENSITIVITY A P2 field that gives an indication of the sensitivity of the
message being sent. It consists of a data structure of type
X 4 _ S E N S I T T V I T Y. A l l o w a b l e v a l u e s a r e
X 4 _ S E N _ P E R S O N A L , X 4 _ S E N _ P R T VAT E o r
X4_SEN_COMPANYCONFIDENTIAL. If not present, a
value of X4_SEN_PERSONAL is supplied.

First Edition 3-39

X.400 PROGRAMMERS GUIDE

X4_K_SUBJECT A P2 descriptor that describes the subject of the X.400
message being sent. It can occur once, several times, or not
at all. It consists of a data structure of type
X4_SUBIECT.

X4_K_TO A P2 descriptor that identifies the primary recipient of the
message. It can occur more than once. It consists of a data
structure of type X4_RECIPIENT, which comprises an
X4_ORDESCRIPTOR, an X4_RE PORT _REQU EST, and
a n X 4 _ R E P L Y _ R E Q U E S T . T h e
X4_REPORT_REQUEST enables the user to select receipt
n o t i fi c a t i o n o r n o n r e c e i p t n o t i fi c a t i o n . Th e
X4_REPLY_REQUEST enables the user to request the
recipient to acknowledge receipt by sending a reply.

X4_K_XREF A P2 descriptor that identifies any previous X.400 messages
that are cross referenced by this X.400 message. It can
occur once, several times, or not at all. It consists of a data
structure of type X4_REF.

The following keys are provided to enable access to the root structures in the header
data structure, and envelope data structure:

X4_K_ROOT_AUTHORISE
Accesses the root to the list of P2 authorize fields

X4_K_ROOT_BCC Accesses the root to the list of P2 BCC recipients

X4_K_ROOT_BODY Accesses the root to the list of X4_BODY structures, that
describe the type of each body part within the message

X4__K__ROOT_CC Accesses the root to the list of P2 CC recipients

X4_K_ROOT_OBSOLETES
Accesses the root to the list of X4_REF structures, which
identify the previous messages that have been made obsolete
by this message

X4_K_ROOT_RECIPIENT
A c c e s s e s t h e r o o t t o t h e l i s t o f
X4_REP0RTEDP1RECIPIENT structures, that describe the
reported recipients of the original message

X4_K_ROOT_REPLY_TO
Accesses the root to the list of X4_ORDESCRIPTOR
structures, that identify the users to which a reply should
be sent

X4_K_ROOT_REPORTED_TRACE
Accesses the root to the list of X4 TRACE structures, that
make up the intermediate trace list

3 - 4 0 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_K_ROOT_TO Accesses the root to the list of P2 primary recipient lists

X4_K_ROOT__TRACE Accesses the root to the list of X4_TRACE structures

X4_K_ROOT_XREF Accesses the root to the list of X4_REF structures, that
identify which previous messages are cross referenced by this
one

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t i on was success fu l .

X4_ERR_BAD_KEY The user has specified an invalid key.

X4_ERR_BAD__REV An invalid data structure version ID was provided.

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

F i r s t E d i t i o n 3 - 4 1

X.400 PROGRAMMERS GUIDE

X4_READ

Function
Initiates a read of the waiting message.

This routine is used to read data.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

char *x4__read(wait)

int wait;

Description
The x4__read call waits for a signal from Prime X.400 for incoming messages, and
returns a pointer to an X4_MSG data structure.

Wait is the maximum wait period (specified in milliseconds). Zero causes the routine
to return immediately if there is no mail to read. A positive value causes the routine
to wait for the indicated period before returning, if there is no mail immediately
available. If a mail item arrives during this period, the routine returns. A negative
value causes an indefinite wait.

Individual data fields may be retrieved by subsequent calls to x4_get.

When users have finished processing this mail, they must call x4_accept or x4_reject
(in which case Prime X.400 deletes the stored message), or x4__logoff (in which case
Prime X.400 attempts to deliver it the next time the user establishes a Prime X.400
session).

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_BAD_MESSAGE
An invalid message format has been received.

X4_ERR_ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

3 - 4 2 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_ERR_N0__MESSAGE
There is no message waiting.

X4_ERR_NOT__OPEN The user does not have a session open to Prime X.400.

X4_ERR__SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

F i r s t E d i t i o n 3 - 4 3

X.400 PROGRAMMER'S GUIDE

X4_REJECT

Function

Rejects responsibility for a received message.

This routine and the API library routine x4_accept, are used to accept or reject mail.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4 reject(logon_ptr)

char *logon_ptr;

Description
The x4_reject call informs Prime X.400 that the X.400 application is unable to handle
the incoming message.

Prime X.400 deletes the stored message.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4 OK The operat ion was successful .

X4__ERR ISC_ERR An Inter Server Communication (ISC) error has occurred.
The error qualifier contains the ISC error code.

X4 ERR_NO_READ The user does not have an unanswered x4 read request.

X4__ERR_NOT_OPEN The user does not have a session open to Prime X.400.

X4_ERR_SYN_ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

3 - 4 4 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

»■ " • X 4 _ R E L E A S E

Function
Releases storage for a Prime X.400 data structure.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4_release(struct)

char *struct;

Description
The x4_release call releases storage for a valid initialized Prime X.400 data structure.

Does not delete body files. These are the caller's responsibility.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4 OK The operat ion was successfu l .

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

F i r s t E d i t i o n 3 - 4 5

X.400 PROGRAMMER'S GUIDE

X4_REPLY

Function
Sends a message reply.

C Syntax
#include <x4__struc.h>

#include <x4_error.h>

char *x4 reply(logon_ptr, envelope, header)

char *logon ptr;
char *envelope;
char *header;

Description
The x4_reply call acknowledges a previously read message, using the information
stored in the message envelope data structure.

This routine returns a pointer to a static X4_MPDUSTRING data structure that
contains the MPDU identifier assigned by Prime X.400.

Returns
If the routine returns a null pointer, then X4_error returns one of the following:

V a l u e M e a n i n g

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

X4_ERR__ISC_ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR__MDNP A mandatory descriptor is missing from the envelope or
header structure provided. The error qualifier contains the
structure ID of the missing descriptor.

X4_ERR_NO_RESOURCE
Prime X.400 is unable to accept this request. The error
qualifier contains the reason for rejection: 1 = server
reconfiguring, 2 = invalid header or envelope, 3 = X.400
server error.

X4 ERR__NOT_OPEN The user does not have a session open to Prime X.400.

3 _ 4 6 F i r s t E d i t i o n

^ P R I M E X . 4 0 0 A P I L I B R A R Y

X4_ERR_SYN_ERR An ISC synchronizer error has occurred. The error qualifier
f c o n t a i n s t h e s y n c h r o n i z e r e r r o r c o d e .

F i r s t E d i t i o n 3 - 4 7

X.400 PROGRAMMER'S GUIDE

X4_SEND

Function
Sends a message.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

char *x4_send(logon_ptr, envelope, header)

char *logon_ptr;
char *envelope;
char ^header;

Description
The x4__send call submits a message to Prime X.400 using the information previously
stored in the nominated data structure.

The routine returns a pointer to a static X4_MPDUSTRING data structure containing
the MPDU identifier assigned by Prime X.400.

Returns
If the routine returns a null pointer, then x4_error returns one of the following
values:

V a l u e M e a n i n g

X4_ERR_BAD_STRUC An invalid data structure ID was provided.

X4_ERR_FIELD_ERROROne of the envelope or header fields contains illegal
characters. The error qualifier contains the structure ID of
the field in error.

X4_ERR_INVALID_CHARS
A message field contains characters that are not valid for
the attribute. The error qualifier contains the structure ID
in error.

X4__ERR_ISC__ERR An ISC error has occurred. The error qualifier contains the
ISC error code.

X4_ERR_MDNP A mandatory descriptor is missing from the envelope or
header structure provided. The error qualifier contains the
structure ID of the missing descriptor.

3 - 4 8 F i r s t E d i t i o n

PRIME X.400 API LIBRARY

X4_ERR_NO_RESOURCE
Prime X.400 is unable to accept this request. The error
qualifier contains the reason for rejection: 1 = Server
reconfiguring, 2 = Invalid header or envelope, 3 = X.400
server error.

X4_ERR_NOT_OPEN The user does not have a session open to Prime X.400.

X4_ERR_SYN__ERR An ISC synchronizer error has occurred. The error qualifier
contains the synchronizer error code.

r

r
r

F i r s t E d i t i o n 3 . 4 9

APPENDICES

NON-C SYNTAX API LIBRARY ROUTINES

Introduction
This appendix lists the PL1 parameter types that correspond to the C parameter types used
in the API library routine descriptions in Chapter 3, PRIME X.400 API LIBRARY. It lists
the PL1 syntax of each API library routine, and describes three API library routines
(described in C) that are used for calling with non-C file units.

F i r s t E d i t i o n A - 1

X.400 PROGRAMMERS GUIDE

Non-C API Library Routines
This section describes three API library routines, described in C, that are used for calling
with non-C file units, that is, PRIMOS® file units.

X4P$DECIA5

Function
Decodes an X.409-encoded 1A5 text body file to a Prime ECS file.

C Syntax
#include <x4_struc.h>

#include <x4_error.h>

int x4p$deciaS(tofu, fromfu)

int tofu;
int fromfu;

* owe- re^>-W <JL 4o, lo, v.&Jt&y

Description
This routine returns X4__OK if the operation was successful.

tofu is the PRIMOS file unit (as returned by SRCH$$) of the destination file, fromfu
is the PRIMOS file unit (as returned by SRCH$$) of the file to be decoded.

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t ion was success fu l .

X4_ERR_EXIA5_STR X.409 IA5 string expected. The error qualifier contains the
type found.

X4_ERR_EXOCT_STR X.409 octet string expected. The error qualifier contains the
type found.

X4_ERR_EXSEQ X.409 sequence expected. The error qualifier contains the
type found.

A ~ 2 F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

X4_ERR__EXSET X.409 set expected. The error qualifier contains the type
found.

X4_ERR_EXTAG_INT X.409 tagged integer expected. The error qualifier contains
the type found.

X4_ERR_F_LE__ERR A PRIMOS file error has occurred, the qualifier is the
PRIMOS error.

X4_ERR__UXSIZE Unexpected X.409 size. The error qualifier contains the size
found.

r

F i r s t E d i t i o n A - 3

X.400 PROGRAMMER'S GUIDE

X4P$DUMP

Function
Produces a formatted diagnostic print of a specified Prime X.400 data structure.

C Syntax
#include <x4__struc.h>

#include <x4_error.h>

int x4p$dump(dmpfu, struc)

int dmpfu;
char *struc;

Description
This routine produces a formatted listing of the specified Prime X.400 data structure.
dmpfu is the PRIMOS file unit (as returned by SRCH$$) of a file to which the dump
is written.

If dmpfu has a value -1, or -2, then the dump is directed as follows:
-1 the dump output is directed to STDOUT
-2 the dump output is directed to STDERR

Returns
The routine returns one of the following values:

V a l u e M e a n i n g

X4_OK The opera t ion was success fu l .

X4__ERR_BAD_STRUC An invalid data structure ID was provided.

X4_ERR_FILE_ERR A PRIMOS file error has occurred, the qualifier gives the
PRIMOS error, or is 0, which indicates that dmpfu is an
illegal file unit value, that is, dmpfu <-2.

A - 4 F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

X4P$ENCIA5

Function
Encodes a Prime ECS text file as an X.409 encoded IA5 text body file.

C Syntax
#include <x4_struc.h>

#include <x4 error.h>

int x4p$encia5(tofu, fromfu)

i n t t o f u ; " 7 p
i n t f r o m f u ; * / JX^tJ^/i f-e-wt-vw-*^

Description
This routine returns X4__OK if the operation was successful.

fromfu is the PRIMOS file unit (as returned by SRCH$$) of the file to be encoded.
tofu is the PRIMOS file unit (as returned by SRCH$$) of the destination file (the
X.409-encoded IA5 text body file).

Returns
The routine returns the following value:

V a l u e M e a n i n g

X4 OK The operat ion was successfu l .

X4__ERR_F_LE__ERR A PRIMOS file error has occurred, the qualifier is the
PRIMOS error.

F i r s t E d i t i o n ^ _ 5

X.400 PROGRAMMERS GUIDE

Parameter Types
This section lists the C parameter types used in the API library routine descriptions in
Chapter 3, PRIME X.400 API LIBRARY, and their equivalent PL1 parameter types.

C T y p e s P L 1 T y p e s

i n t fi x e d b i n a r y (3 l)

c h a r [n] C H A R (*)

c h a r * 3 - w o r d p o i n t e r

i n t * A D D R i v a r i a b l e)

PL1 Syntax API Library Routines
This section describes how to declare and call each API library routine, using PL1. These
routines are described in Chapter 3, PRIME X.400 API LIBRARY.

X4_ACCEPT
PL1 Syntax:

del x4_accept entry(ptr) returns(fixed bin(3l));

X4_ALLOC
PL1 Syntax:

del x4_alloc entry(fixed bin(3l), fixed bin(3l)) returns (ptr);

del struc ptr;

struc = x4_alloc ((id), (rev));

Example:

struc = x4_alloc((X4_ID_IPM_HEADER), (2));

^ 4 _ 5 F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

X4_CLEAR
PL1 Syntax:

del x4_clear entryO;

call x4_clear();

X4_CLOSE
PL1 Syntax:

del x4_close entryO returns(fixed bin(3l));

del status fixed bin(3l);

status = x4_close();

X4_COPY
PL1 Syntax:

del x4__copy entry(ptr, ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del struc 1 ptr;
del struc2 ptr;

status = x4_copy(strucl, struc2);

X4_DECT61
PL1 Syntax:

del x4_dect61 entry(ptr, ptr) returns fixed bin(3l);

del erT fixed bin(3l);
del sre char(n);
del dest char(n);

err = x4_dect6l(ADDR(dest), ADDR(src));

X4_DRNOTIFY
PL1 Syntax:

del x4_drnotify entryiptr, ptr) returns(ptr);

del struc 1 ptr;
del pid ptr;

F i r s t E d i t i o n j ^ _ y

X.400 PROGRAMMERS GUIDE

struc2 - x4__drnotify(pid, struc 1);

X4__ENCHAIN
PL1 Syntax:

del x4_enchain entry(ptr, ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del struc 1 ptr;
del struc2 ptr;

status = x4__enchain(ADDR(root), struc2);

Example:

status = x4_enchain(ADDR(strucl->X4_ORNAME.stdatt.orgunit), struc2);

X4_ENCT61
PL1 Syntax:

del x4_enct61 entry(ptr, ptr, fixed bin(3l)) returns fixed bin(3l);

del err fixed bin(3l);
del sre char(n);
del dest char(n);

err = x4_enct6l(ADDR(dest), ADDR(src),(n));

X4_ERROR
PL1 Syntax:

del x4_error entry(ptr, ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del ecode fixed bin(3l);
del secode fixed bin(3l);

status = x4__error(ADDR(ecode), ADDR(secode));

X4_FIND
PL1 Syntax:

del x4__find entry(ptr, fixed bin(3l)) returns(ptr);

A S F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

del struc 1 ptr;
del struc2 ptr;

struc2 = x4_find(strucl, (key));

Example:

struc2 = x4_find(strucl, (X4_K_NEXT));

X4_GET
PL1 Syntax:

del x4_get entry(ptr, fixed bin(3l)) returns(ptr);

^ * d e l s t r u c 1 p t r ;
del struc2 ptr;

struc2 = x4_get(strucl (key));

Example:

struc2 = x4_get(strucl, (X4_K_CC));

X4_GETGDI
PL1 Syntax:

del x4_getgdi entry returns(ptr);

del gdi ptr;

gdi = x4 getgdiO;

X4_GETMTA
PL1 Syntax:

del x4 getmta entry returns(ptr);

del mta ptr;

mta = x4 getmtaQ;

F i r s t E d i t i o n A - 9

X.400 PROGRAMMERS GUIDE

X4__NIT
PL1 Syntax:

del x4_init entry(ptr, fixed bin(3l), fixed bin(3l)) returns(fixed bin(3l));

del status fixed bin(3l);
del struc 1 ptr;

status = x4_init(strucl, (id), (rev));

Example:

status = x4__init(strucl, (X4_ID_RECIP1ENT), (2));

X4_KILL
PL1 Syntax:

del x4_kill entry(ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del struc ptr;

status = x4__kill(struc);

X4__LOGOFF
PL1 Syntax:

del x4_logoff entry(ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del pid ptr;

status = x4__logoff(pid);

X4_LOGON
PL1 Syntax:

del x4__logon entry(ptr, ptr, fixed bin(3l)) returns(ptr);

del pid ptr;
del user char(n);
del dir chaKn);

pid = 4_logon(ADDR(user), ADDR(dir), (mode));

A - 1 0 F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

Example:

pid = x4_logon(ADDR(user), ADDR(dir), (X4_K_RECEIVE));

X4__0PEN_GWI
PL1 Syntax:

del x4_open_gwi entry(ptr) returns(ptr);

del pid ptr;
del server char(n);

pid = x4_open_gwi(ADDR(server));

X4_0PEN_UAI
PL1 Syntax:

del x4_open_uai entry(ptr, fixed bin(3l)) returns(ptr);

del pid ptr;
del server char(n);
del retired fixed bin(3l);

pid = x4_open_uai(ADDR(server), (retired));

X4_PROBE
PL1 Syntax:

del x4_probe entry(ptr) returns(ptr);

del strucl ptr;
del struc2 ptr;

struc2 = x4_probe(strucl);

X4_PUT
PL1 Syntax:

del x4_put entry(ptr, fixed bin(3l), ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del strucl ptr;
del struc2 ptr;

F i r s t E d i t i o n A - 1 1

X.400 PROGRAMMERS GUIDE

status = x4_put(strucl, (key), struc2);

Example:

status = x4__put(strucl, (X4__K_T0), struc2);

X4_READ
PL1 Syntax:

del x4_read entry(fixed bin(3l)) returns(ptr);

del delay fixed bin(3l);
del strucl ptr;

strucl = x4 read((delay));

X4_REJECT
PL1 Syntax:

del x4__reject entry(ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del pid ptr;

status = x4__reject(pid);

X4_RELEASE
PL1 Syntax:

del x4_release entry(ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del strucl ptr;

status = x4_release(strucl);

X4_REPLY
PL1 Syntax:

del x4_reply entry(ptr, ptr, ptr) returns(ptr);

del pid ptr;
del strucl ptr;
del struc2 ptr;
del struc3 ptr;

A _ 2 2 F i r s t E d i t i o n

NON-C SYNTAX API LIBRARY ROUTINES

struc3 = x4_reply(pid, strucl, struc2);

X4_SEND
PL1 Syntax:

del x4_send entry(ptr, ptr, ptr) returns(ptr);

del pid ptr;
del strucl ptr;
del struc2 ptr;
del struc3 ptr;

struc3 = x4__send(pid, strucl, struc2);

X4P$DECIA5
PL1 Syntax:

del x4p$decia5 entry(fixed bin(3l), fixed bin(3l)) returns(fixed bin(3l));

del status fixed bin(3l);
del fileunitto fixed bin(3l);
del fileunitfrm fixed bin(3l);

status = x4p$decia5((fileunitto), (fileunitfrm));

where:

fileunitto PRIMOS file unit as returned by SRCH$$ of destination file

fileunitfrm PRIMOS file unit as returned by SRCH$$ of source file

X4P$DUMP
PL1 Syntax:

del x4p$dump entry(fixed bin(3l), ptr) returns(fixed bin(3l));

del status fixed bin(3l);
del fileunit fixed bin(3l);
del struc ptr;

status = x4p$dump((fileunit), struc);

where:

F i r s t E d i t i o n A - 1 3

X.400 PROGRAMMER'S GUIDE

fileunit

struc

PRIMOS file unit as returned by SRCH$$

or -1 for Cs STDOUT

or -2 for Cs STDERR

if -1 or -2 are used, pathname is ignored

A pointer to the structure to be dumped

X4P$ENCIA5
PL1 Syntax:

del x4p$encia5 entry(fixed bin(3l), fixed bin(3l)) returns(fixed bin(3l));

del status fixed bin(3l);
del fileunitto fixed bin(3l);
del fileunitfrm fixed bin(3l);

status = x4p$encia5((fileunitto), (fileunitfrm));

where:

fileunitto

fileunitfrm

PRIMOS file unit as returned by SRCH$$ of destination file

PRIMOS file unit as returned by SRCH$$ of source file

A-14 First Edition

EXAMPLE APPLICATION PROGRAM TO SEND A
MESSAGE

Introduction
The following code sends an X.400 message using the Prime X.400 API.

F i r s t E d i t i o n j j _ j

X.400 PROGRAMMER'S GUIDE

/* SEND.C,
Send a simple mail message
Copyright (c) 1989, Prime Computer. Inc., Natick, Ma 01760 */

/« TITLE : SEND - Send an X.400 message using the PRIME X.400 API */

/* DESCRIPTION : Example of using the X400 API to send an X400 mail message.

This example is reasonably robust code, and in particular takes
care with string handling. Error handling and reporting has been
kept to a minimum for clarity of exposition of the features of
us i ng the API.

Essential information is prompted from the user, but other
parameters are set to inbuilt defaults: these may not be
appropr iate for any given appl icat ion, other than as an
example.

Only a subset of the X.400 functionality available with the API
is ut iIized.

• /

/♦ START-CODE */

#define TRUE 1
#define FALSE 0
^define TERMBUF 80 /* Max characters safely read from terminal */

#include <stdio.h>
#include <ctype.h>
#include <string.h>
#include <x4_keys.h>
#include <x4_struc.h>
#include <x4_error.h>

/* Global variables for current compilation unit */

static char Iinebuff[TERMBUF+1]; /* buffer for reading from terminal */
static char strbuff[TERMBUF+1]; /* buffer for output from -
s t a t i c i n t d e b u g = F A L S E ; i n p u t s t r i n g c o n v e r s i o n * /

mai n ()
\

X4_IPM_HEADER *hdr;
X4_IPM_ENVEL0PE *env;
X4_MPDUSTRING *mid;
X4_MSG * I ogon_.pt r;
char I ocal_name[X4_SZ_L0CALNAME+1];
char encodedmaiIfile[X4_SZ_FILENAME+1];
i nt code, qua I;
int rtncode;
extern c leanupQ ;

/* Ask the user if this is a debugging session, if so this program
* uses x4_dump periodically to show the built structures.
* /
{

char *dbgflg[2];
qry_readstr("\nls this a debugging session ? [Y|N]: ", dbgflg, 1);

if (toupper(dbgflg[0]) = 'Y*)
debug - TRUE;

\

g - 2 F i r s t E d i t i o n

EXAMPLE APPLICATION PROGRAM TO SEND A MESSAGE

* Init iate session with server process
• /

x 4 _ c l e a r () ;
if ((char ♦) x4_open_.ua i ("", 1) = NULL)

goto label_open_uai_err;

/ •
* Prompt for I oca I name and logon to UA component
• /

qry_readstr("\nEnter local name: ", local_name, X4_SZ_L0CALNAME);

if ((char •) (logon_ptr =
(X4_MSG *) x4_logon (local_name, "", X4_K_RECEIVE | X4_K_SEND)) «- NULL)
goto Iabel_logon_err;

/* Allocate the Send (root) structures */

hdr - (X4_IPM_HEADER *) x4_aI Ioc(X4_ID_IPM_HEADER, 1);
hdr->strue.voldata = TRUE;

©nv = (X4_IPM_ENVEL0PE *) x4_aI Ioc(X4_ID_IPM_ENVELOPE, 1);
env->strue.vaI data = TRUE;

env->content_type.strue.valdata - TRUE;
env->content_type.vaIue - X4_CT_P2;

/* Give the message a unique stamp */

\
char unique_str[X4_SZ_UAC0NTENTID+l];

qry_readstr("\nEnter Reference: ", unique_str, X4_SZ_UAC0NTENTID);

strncpyl(env->ua_content_id.string, unique_str, X4_SZ_UAC0NTENTID);
env->ua_content_id.strue.vaI data - TRUE;
if (debug)

x4_dump(stdout, &env->ua_content_id);

st rncpyl(hdr->reference.ipst r.st r ing, unique_str,X4_SZ_IPSTRING) ;
hdr->reference.strue.vaIdata = TRUE;
hdr->reference.ipstr.struc.valdata = TRUE;
if (debug)

x4_dump(stdout, fthdr->reference);
\

/* Put in a subject.. */
{ char subject[X4_SZ_SUBJECT+1];

qry_readstr("\nEnter Subject: ", subject, X4_SZ_SUBJECT);
strncpy1(hdr->subject.string, subject, X4_SZ_SUBJECT);
hdr->subject.struc.valdata - TRUE;
if (debug)
\

fpr int f (s tdout , "Done subject \n") ;
x4_dump(stdout,hdr);

\
\

/* Say who this message is from using freeformname */
\ char nicename[X4_SZ_FREEF0RMNAME+1];

X4_0RDESCRIPT0R ^originator =
(X4_0RDESCRIPT0R *) x4_aI Ioc(X4_ID_0RDESCRIPT0R, 1);

F i r s t E d i t i o n B - 3

X.400 PROGRAMMERS GUIDE

qry_readstr("\nEnter Originators usual name: ", nicenome, X4_SZ_FREEF0RMNAME)
strncpyl(originator->name.string, nicename, X4_SZ_FREEFORMNAME);
originator->struc.valdata - TRUE;
originator->name.struc.valdata - TRUE;

x4_put(hdr, X4_K_FR0M. originator);
if (debug)
\

fprintf(stdout,"Added originator name\n");
x4_dump(stdout,hdr);

I
\
h

* Fill in Recipient details.
* /

\ X4_0RNAME *orname;

/* Prompt for Recipient 0/R name details, and obtain pointer to completed
ORNAME structure in variable orname */

put_p1_recipient(env, icorname);

/* Construct P2 recipient fields using pointer to P1 ORNAME */
put_p2_recipient(hdr, orname);

\

/* Mandatory and default parameters that must be present for server */

{ X4_PRI0RITY apriority - (X4_PRI0RITY *)x4_alloc(X4_ID_PRI0RITY. 1);
priority -> strue.valdata - TRUE;
priority -> value - X4_P_URGENT;
x4_put(env, X4_K_PRI0RITY, priority);
x4_c lear () ;

\
\ X4_IMP0RTANCE *importance = (X4_IMPORTANCE *) x4_alIoc(X4_ID_IMPORTANCE, 1) ;

importance-> strue.valdata = TRUE;
importance -> value = X4_IMP_HIGH;
x4_put(hdr, X4_K_IMPORTANCE, importance);
x4_cIear() ;

I
\ X4.SENSITIVITY -sensitivity = (X4_SENSITIVITY *) x4_aI Ioc(X4_ID_SENSITIVITY,1);

sensitivity -> strue.valdata = TRUE;
sensitivity -> value = X4_SEN_PERS0NAL;
x4_put(hdr. X4_K_SENSITIVITY, sensitivity);
x4_cIear() ;

I

/* Encode message */
j FILE »unfp; /* normal ascii text file — can be the terminal */

FILE *enfp; /» x409 encoded bodyfile •/
char maiIfiIe[TERMBUF+1];

qry_readstr("\nEnter mail file name: ", maiIfile, X4_SZ_FILENAME);
qry_readstr("\nEnter encoded file name: ", encodedmaiIfile, X4_SZ_FILENAME);

if ((unfp - fopen(maiIfile, "r")) = NULL)
e x i t Q ;

if ((enfp = fopen(encodedmaiIfile, "w")) -= NULL)
ex i t();

x4_encia5(enfp, unfp);
x4_c lear () ;
fc lose(unfp) ;
fc lose(enfp) ;

B - 4 F i r s t E d i t i o n

EXAMPLE APPLICATION PROGRAM TO SEND A MESSAGE

/* Put in message body */
I

X4L_B0DY *bodyPtr = (X4L_B0DY *) x4_aI Ioc(X4L_ID_B0DY, 1);

st rcpy(bodyPt r->value.f iIename.string, encodedmaiIf i le) ;
bodyPtr->struc.valdata = TRUE;
bodyPtr->vaIue.st ruc.valdata = TRUE;
bodyPtr->value.part.strue.vaI data = TRUE;
bodyPtr->vaIue.part .value = X4_BT_IA5TEXT;
bodyPtr->value.fiIename.strue.vaI data = TRUE;

x4_enchai n(ihdr->body_list. bodyPt r);
I
/* Indicate the type of body in envelope */

/* Set third bit in bitstring for IA5text — see X.411 Para 3.4.1.4 »/
env->encoded.bodytype.value = 0x20000000;
env->encoded.strue.valdata = TRUE;
env->encoded.bodytype.strue.valdata = TRUE;

x4_clear() ;

i f (debug)
\

fpr int f (stdout." \n\nDUMP OF ENVEL0PE\n") ;
x 4 _ d u m p (s t d o u t , e n v) ;
fpr int f (stdout." \n\nDUMP OF HEADER\n");
x 4 _ d u m p (s t d o u t , h d r) ;

\

/* Send the message */

mid = (X4_MPDUSTRING •) x4_send(Iogon_ptr. env. hdr);
if ((mid !- NULL) __ (mid -> struc.vaI data))

fpr int f (stdout,"Your Message ID is %s\n", mid -> str ing);
e I se

go to lobe l_send_er r ;

rtneode - 0;
l a b e l _ r e t u r n :

x 4 _ r e I e a s e (e n v) ;
x 4 _ r e I e a s e (h d r) ;
x 4 _ c l e a r () ;
if (logon_ptr I- NULL)

x4_ I ogof f (I ogon_.pt r) ;
x 4 _ c l o s e () ;
r e t u r n (r t n e o d e) ;

/ •
* Exception Handling.
• /

I a b e l _ s e n d _ e r r :
f p r i n t f (s t d e r r , " s e n d : ") ; g o t o I a b e l _ s e t e r r ;

I abe l_open_.ua i_er r:
f p r i n t f (s t d e r r . " o p e n : ") ; g o t o I a b e l _ s e t e r r ;

I a b e l _ l o g o n _ e r r :
f p r i n t f (s t d e r r , " l o g o n : ") ; g o t o l a b e l _ s e t e r r ;

l a b e l _ s e t e r r :
p r i n t f (" F a i l e d I ; ") ;
i f (x4_e r ro r (* code , f t qua l))

F i r s t E d i t i o n g _ $

X.400 PROGRAMMERS GUIDE

fprintf(stderr,"Status Xd Qual Xd\n", code, qual);
rtneode - code;
goto label_return;

\

/* put_p1_recipient */

/ •
* Put a recipient 0/R name into the envelope.
• /

put_p1_recipient(xenv, xxorname)
char *xenv;
X4_ORNAME **xxorname;

\
X4_P1RECIPIENT ^recipient -

(X4_P1RECIPIENT *) x4_alloc(X4_ID_P1RECIPIENT, 1);

recipient->strue.valdata — TRUE;
recipient->orname.struc.valdata - TRUE;
recipient->orname.stdatt.struc.valdata - TRUE;

/* Server requires whole of 0/R name variant 1 (if used) */
/* COUNTRY. ADMD, PRMD, ORGANISATION , UNIT, PERSONAL NAME */

qry_readstr("\Enter CountryName: ",
recipient->orname.stdatt.cname.string, X4_SZ_C0UNTRYNAME);

recipient->orname.stdatt.cname.struc.valdata = TRUE;

qry_readstr("\Enter ADMD: ",
recipient->orname.stdatt.admd.st ring, X4_SZ_ADMD);

recipient->orname.stdatt.admd.strue.vaI data = TRUE;

qry_readstr("\nEnter PRMD: ",
rec i pient->orname.stdatt.prmd.st ri ng, X4_SZ_PRMD);

recipient->orname.stdatt.prmd.strue.vaIdata = TRUE;

qry_readstr("\nEnter OrganizationName: ",
rec i pient->orname.stdatt.orgname.st r ing, X4_SZ_0RGNAME);

recipient->orname.stdatt.orgname.strue.vaI data = TRUE;

J /* Allocate and chain an orgunit list item to the root orgunit */
X4L_0RGUNIT *lorgunit = (X4L_0RGUNIT •) x4_alIoc(X4L_ID_0RGUNIT, 1);

qry_readstr("\Enter Oranization Unit: ",
Iorgunit ->value.string. X4_SZ_0RGUNIT);

/* Set the list as valid */
lorgunit ->strue.valdata = TRUE;

/* set the value of the list item as valid */
lorgunit ->vaIue.strue.vaI data = TRUE;

recipient->orname.stdatt.orgunit.strue.valdata = TRUE;

x4_enchain(_(recipi ent->orname.stdatt.orgunit), lorgunit);
if (debug)

x4_dump(stdout,_(recipi ent->orname.stdatt.orguni t));
I
qry_readst r (" \nEnter Surname: " ,

recipient->orname.stdatt.name.surname.str i ng, X4_SZ_SURNAME);
rec ip ien t ->o rname.s tda t t . name .s t ruc . va lda ta = 1 ;

B - 6 F i r s t E d i t i o n

EXAMPLE APPLICATION PROGRAM TO SEND A MESSAGE

recipient->orname.stdatt.name.surname.strue.valdata - 1;

recipient->extension.value = 1;
recipient->extension.strue.vaIdata «= TRUE;

/* PerRecipientFlag see Figure 19/X.411 */
/* Bit 0: Responsibility On - 1 •/
/» Bits 1-2: Report Requested: Audit-And-Confirmed - 11 */
/* Bits 3-4: User Report Request - Confirmed - 10 */
recipient->per_recipient_flag.value - 0xF0000000;
recipient->per_recipient_fIag.strue.valdata = TRUE;

x4_put(xenv, X4_K_RECIPIENT. recipient);

•xxorname = *(recipient-> orname);
\

/* put_p2_recipient */

/ *
* Put a recipient 0/R name into the Send header.
* Refer to the P2 definition, in figure 3/X.420. for details of the
* Recipient fields, e.g. ORDescriptor.
* If either of reportRequest or replyRequest are selected then the
* 0/R Descriptor must contain an 0/R name.
• /

put_p2_recipient(xhdr, xorname)
X4_IPM_HEADER *xhdr;
X4_0RNAME *xorname;

I
X4_RECIPIENT *rcp -

(X4.RECIPIENT *) x4_aI Ioc(X4_ID_RECIPIENT. 1);

/* Recipient.ORDescriptor */

x4_copy(*(rcp->ordescriptor.orname), xorname);
rep—>strue.vaI data - TRUE;
rcp->ordescriptor.strue.valdata = TRUE;

/♦ Recipient.reportRequest: Set First bit for receiptNotification */
rcp->request.value = 0x80000000;
rcp->request.struc.valdata = TRUE;

/* Recipient.replyRequest: Set boolean to true */
rcp->reply.vaIue = TRUE;
rcp->reply.struc.vaIdata = TRUE;

x4_put(xhdr. X4_K_T0, rep);
\

/» strncpyl */

/♦ strncpyl: version of strncpy that guarantees a null terminated result,
by assuming that the to buffer is one byte larger than the
size specified by the maxlen argument */

strncpy1(to, from, maxlen)
char »to;
char *from;
unsigned int maxlen;
\

char * Iim;

F i r s t E d i t i o n B - 7

X.400 PROGRAMMER'S GUIDE

Iim - to + maxlen;
while ((to < Iim) kk (*to++ = *from++));
• to - '\0\

/» qry_readstr */

qry_readstr(prompt, string, max)
char »prompt;
char *string;
int max;
{ char *nI;

fpr int f (stdout, prompt);
if (fgets(strbuff. sizeof(strbuff).stdin) = NULL)

kiI 1(0, SIGTERM);
if ((nl = strchr(strbuff,'\n')) I- NULL)

*nl = '\0';
s t rncpy l (s t r i ng , s t rbu f f .max) ;
if (debug)
\

f p r i n t f (s t d o u t , " % s \ n " . s t r i n g) ;
\

\
/* END-CODE */

B - 8 F i r s t E d i t i o n

X.400 API LIBRARY ROUTINE RETURN VALUES

Introduction
This appendix lists the return values of each of the X.400 API library routines.

X4_OK (0)
The operation was successful.

X4_ERR_BAD_COPY (19)
Incompatible data structures for copy.

X4_ERR__BAD_KEY (4)
The user has specified an invalid key.

X4_ERR__BAD_MESSAGE (33)
An invalid message format has been received.

X4_ERR_BAD__RESPONSE (36)
An unrecognized message type from the Prime X.400 server.

X4_ERR_BAD_REV (12)
An invalid data structure version was provided.

X4__ERR_BAD__STRUC (3)
An invalid unknown data structure ID was provided.

X4_ERR_END_OF_LIST (18)
There are no more items in this list.

X4_ERR_EXIA5_STR (50)
X.409 IA5 string expected. The error qualifier contains the X.409 type found.

X4_ERR_EXOCT_STR (49)
X.409 octet string expected. The error qualifier contains the X.409 type found.

X4_ERR_EXSET (46)
X.409 set expected. The error qualifier contains the X.409 type found.

F i r s t E d i t i o n C - l

X.400 PROGRAMMERS GUIDE

X4_ERR_EXSEQ (45)
X.409 sequence expected. The error qualifier contains the X.409 type found.

X4_ERR_EXTAG__NT (47)
X.409 tagged integer expected. The error qualifier contains the X.409 type found.

V?. X4_ERR_FIELD_ERROR (51)
One of the envelope or header fields contains illegal characters. The error qualifier
contains the structure ID of the field in error.

X4_ERR_FILE_ERR (27)
A file system error has occurred. The error qualifier contains the PRIMOS® error code.

X4__ERR_INVALID_CHARS (S^TC^
Invalid characters in message or string.

X4_ERR_ISC_ERR (26)
An Inter Server Communication (ISC) error has occurred. The error qualifier contains
the ISC error code as defined in SYSCOM>ISC__KEYS.H.INS.CC

X4_ERR_LIST_EMPTY (17)
There is no data item present for this list.

X4_ERR_LOGGED_ON (34)
The user is already logged on.

X4_ERR_MDNP (41)
A mandatory descriptor is missing from the envelope data structure provided. The
error qualifier contains the structure ID of the missing descriptor, for example,
X4_ID_GLOBALDOMAINlD.

X4_ERR_NAC (39)
The user does not have access rights to this Prime X.400 user name.

X4_ERR_NO_DATA (20)
No data present/available.

X4_ERR_NO_MESSAGE (10)
There is no message waiting.

X4__ERR_NO_READ (ll)
The user does not have an unanswered x4 read request.

X4_ERR_NO_RESOURCE (6)
Insufficient resources to process request.

X4_ERR_NOT_GWI (52)
A communication path to a Prime X.400 server has already been established using the
x4 open uai call.

C - 2 F i r s t E d i t i o n

X.400 API LIBRARY ROUTINE RETURN VALUES

X4_ERR__NOT_OPEN (l)
A session is not open to the Prime X.400 server.

X4_ERR_OPEN (7)
The user already has a path open to Prime X.400.

X4_ERR_RECONFIGURING (35)
The Prime X.400 server is reconfiguring.

X4_ERR_SYN_ERR (32)
An ISC Synchronizer error has occurred. The error qualifier contains the synchronizer
error code as defined in SYSCOM>SYNC_CODES.H.INS.CC

X4_ERR__TERMINATED (2)
Prime X.400 has closed down.

X4_ERR_TOO_LONG (53)
The resulting T.61 string is longer than the maximum specified by maxlen.

X4_ERR_UNKNOWN_USER (5)
The user name is not present in the configuration file being used by Prime X.400.

X4_ERR_UXSIZE (48)
Unexpected X.409 size. The error qualifier contains the size found.

F i r s t E d i t i o n C - 3

INDEX

INDEX

r Actioning receipt of mail, 1-4, 2-12
Prime X.400 reliable transfer store

(RTS), 2-12
x4_accept API library routine, 2-12
x4_reject API library routine, 2-12

Adding fields to a message envelope or
message header data structure, 1-3,
2-8

Allocating storage and initializing a
message envelope or message header
data structure, 1-3, 2-8

API library routines, 2-9
Application programming interface (API),

1-3

B

Body, 2-3

x4__decia5 API library routine, 2-12
Delivery notification (DN), 2-2, 2-5, 2-15

See IPM message receipt (IPMMR),
x4_accept API library routine, 2-15
x4_get API library routine, 2-15
x4_read API library routine, 2-15
x4 reject API library routine, 2-15

Delivery notification for probes (DNP),
2-3, 2-5, 2-17

See IPM message receipt (IPMMR),
x4_accept API library routine, 2-17
x4__get API library routine, 2-17
x4_read API library routine, 2-17
x4 reject API library routine, 2-17

Delivery notification submission (DNS),
2-3, 2-5, 2-16

x4_drnotify API library routine, 2-16
x4__put API library routine, 2-16

Delivery notification, 2-2, 2-5
delivery notification submission (DNS),

2-3, 2-5

C parameter types, A-6
CCITT, 1-1

international telegraph and telephone
consultative committee (CCITT), 1-1

D

Data structures, 2-7
message components, 2-7
the file STRUC.H.INS.C, 2-7

Decoding files, 1-4, 2-7, 2-8, 2-12
Prime extended character set (ECS),

2-12
X.409-encoded IA5Text body file, 2-12

Encoding files, 1-4, 2-7, 2-8, 2-13
Prime extended character set (ECS),

2-13
X.409-encoded IA5Text body file, 2-13
x4__encia5 API library routine, 2-13

Envelope, 2-3
Error handling, 2-9

the file X4_ERROR.H.INS.C, 2-9
x4__error API library routine, 2-9

Establishing a communication path to a
Prime X.400 server process, 2-10

inter server communication (ISC), 2-10
x4__close API library routine, 2-10
x4_open__gwi API library routine,

2-10

First Edition Index-1

X.400 PROGRAMMERS GUIDE

x4_open__uai API library routine,
2-10

Establishing a Prime X.400 session, 1-3,
2-10

x4__logoff API library routine, 2-11
x4_logon API library routine, 2-10

Example application program to send a
message, B-l

Fetching fields from a message envelope
and message header data structure,
1-4, 2-8, 2-11

x4_get API library routine, 2-11

G

Gateway, 2-1, 2-2
X.400 message types, 2-2

H

Handling gateway messages with the
API, 2-16, 2-17

See handling user agent messages
with the API,

delivery notification for probes (DNP),
2-17

delivery notification submission (DNS),
2-16

probe submission (PS), 2-16
Handling user agent messages with the

API, 2-13, 2-15
delivery notification (DN), 2-15
IPM message receipt (IPMMR), 2-14
IPM message submission (IPMMS), 2-13
receipt notification (RN), 2-15
receipt notification receipt (RNR), 2-15

Header, 2-3

I

Inter server communication (ISC), 2-10
Interpersonal message types, 2-2, 2-5, 2-6

delivery notification, 2-2, 2-5
IPM message, 2-2, 2-5, 2-6
probe, 2-3, 2-5

receipt notification, 2-2, 2-5, 2-6
IPM message receipt (IPMMR), 2-2, 2-5,

2-6, 2-14, 2-15
Prime X.400 reliable transfer store

(RTS), 2-14
x4_accept API library routine, 2-14
x4__get API library routine, 2-14
x4_put API library routine, 2-14
x4_read API library routine, 2-14
x4__reject API library routine, 2-14
x4_reply API library routine, 2-15

IPM message submission (IPMMS), 2-2,
2-5, 2-6, 2-13

x4__put API library routine, 2-13
x4_send API library routine, 2-13

IPM message, 2-2, 2-5, 2-6
IPM message receipt (IPMMR), 2-2, 2-5,

2-6
IPM message submission (IPMMS), 2-2,

2-5, 2-6
ISO, 1-1

international organization for
standardization (ISO), 1-1

Linked lists, 2-12
Lists of structures, 2-8

M

Message body types, 2-6
ForwardedlPMessage, 2-7
G3Fax, 2-6
LA5Text, 2-6
NationallyDefined, 2-7
SFD, 2-7
TIFO, 2-7
TIF1, 2-7
TTX, 2-7

Message components, 2-7, 2-8
lists of structures, 2-8
primitive data structures, 2-8
standard substructure, 2-7

Message envelope data items for gateway
interpersonal message types, 2-5

X4_K_CONTENT__ID, 2-5
X4_K_CONTENT_TYPE, 2-5
X4 K DEFERRED_DELIVERY, 2-5

Index-2 First Edition

INDEX

r

X4_K_ENC0DED, 2-5
X4_K_LENGTH, 2-5
X4_K_MPDU_ID, 2-5
X4_K_0RIGINAT0R, 2-5
X4_K_PER_MESSAGE_FLAG, 2-5
X4_K_PRI0RITY, 2-5
X4_K_RECIPIENT, 2-5
X4_K_REP0RTED_MESSAGE_ID,

2-5
X4_K_REP0RTED_TRACE, 2-5
X4_K_TRACE, 2-5

Message envelope data items for user
agent interpersonal message types, 2-5

X4_K_CONTENT_ID, 2-5
X4_K_CONTENT_TYPE, 2-5
X4_K_DEFERRED_DELIVERY, 2-5
X4_K_ENCODED, 2-5
X4_K_MPDU_ID, 2-5
X4_K_ORIGINATOR, 2-5
X4_K_PER_MESSAGE_FLAG, 2-5
X4_K_PRIORITY, 2-5
X4_K_REaPIENT, 2-5
X4_K_REPORTED_MESSAGE_ID,

2-5
X4_K_REPORTED_TRACE, 2-5
X4_K_TRACE, 2-5

Message envelope data structure, 2-4, 2-5
data items for gateway interpersonal

message types, 2-5
data items for user agent interpersonal

message types, 2-4
Message envelope, 2-4

message transfer agent (MTA), 2-4
X.400 PI protocol, 2-4

Message handling system (MHS), 1-2, 2-9
Message header data items for user agent

interpersonal message types, 2-6
X4_K_ACrUAL_RECIPIENT, 2-6
X4_K_AUTHORISE, 2-6
X4_K_AUTO_FORWARD, 2-6
X4_K_BCC, 2-6
X4__K_BODY, 2-6
X4_K_CC, 2-6
X4_K_DELIVERY__T_ME, 2-6
X4_K_ENCODED, 2-6
X4_K_EXPIRES, 2-6
X4_K_FROM, 2-6
X4_K_IMPORTANCE, 2-6
X4_K_IN_REPLY__TO, 2-6
X4_K_LNTENDED__RECIPIENT, 2-6

X4_K_NON-RECEIPT_INFO, 2-6
X4_K_OBSOLETES, 2-6
X4_K_RECEIPT_INFO, 2-6
X4_K_REF, 2-6
X4_K_REPLY_BY, 2-6
X4_K_REPLY_TO, 2-6
X4_K_SENSITIVITY, 2-6
X4_K_SUBJECT, 2-6
X4_K_TO, 2-6
X4_K_XREF, 2-6

Message header data structure, 2-4, 2-6
data items for user agent interpersonal

message types, 2-4, 2-6
Message header, 2-6

message transfer agent (MTA), 2-6
user agent (UA), 2-6
X.400 P2 protocol, 2-6

Message structure, 2-3
body, 2-3
envelope, 2-3
header, 2-3

Message transfer agent (MTA), 1-2, 1-3,
2-4, 2-6

Message transfer service (MTS), 1-3

N

Non-C API library routines, A-2
X4p$DECIA5, A-2
X4P$DUMP, A-4
X4P$ENCIA5, A-5

O

OSI, 1-1
CCITT, 1-1
ISO, 1-1
open systems interconnection (OSI), 1-1
the OSI reference model, 1-1

Parameter types, A-6
C parameter types, A-6
PL1 parameter types, A-6

PL1 parameter types, A-6
PL1 syntax API library routines, A-6

X4_ACCEPT, A-6
X4_ALLOC, A-6

First Edition Index-3

X.400 PROGRAMMERS GUIDE

X4_CLEAR, A-7
X4_CL0SE, A-7
X4_C0PY, A-7
X4_DECT61, A-7
X4_DRN0T_FY, A-7
X4_ENCHAIN, A-8
X4__ENCT61, A-8
X4_ERR0R, A-8
X4_FIND, A-8
X4_GET, A-9
X4_GETGDI, A-9
X4_GETMTA, A-9
X4_INIT, A-10
X4__K_LL, A-10
X4_LOGOFF, A-10
X4_LOGON, A-10
X4_0PEN_GWI, All
X4_0PEN__UAI, A-ll
X4_PR0BE, A-ll
X4_PUT, A-ll
X4_READ, A-12
X4_REJECT, A-12
X4_RELEASE, A-12
X4_REPLY, A-12
X4_SEND, A-13
X4P$DECIA5, A-13
X4P$DUMP, A-13
X4P$ENC1A5, A-14

Prime extended character set (ECS), 2-12
Prime X.400 API library, 3-2

summary of API library routines, 3-2
Prime X.400 API, 1-3, 2-1, 2-8, 2-9,

2-11, 2-12, 2-13
actioning receipt of mail, 1-4, 2-12
adding fields to a message envelope or

message header data structure, 1-3,
2-8

allocating storage and initializing a
message envelope or message header
data structure, 1-3, 2-8

decoding files, 1-4, 2-8, 2-12
encoding files, 1-4, 2-8, 2-12
error handling, 2-9
establishing a communication path to a

Prime X.400 server process, 1-3, 2-10
establishing a Prime X.400 session, 1-3,

2-10
fetching fields from a message

envelope and message header data
structure, 1-4, 2-8, 2-11

programming, 2-1
releasing storage for a message

envelope or message header data
structure, 1-3

requesting that incoming messages,
delivery notifications, and receipt
notifications be read, 1-4, 2-8, 2-11

sending an interpersonal message, 1-4
terminating a communication path to a

Prime X.400 server process, 1-4, 2-13
terminating a Prime X.400 session, 1-4,

2-13
Prime X.400 concepts, 2-1

Prime X.400 gateway, 2-1
Prime X.400 user agent, 2-1

Prime X.400 configuration file, 2-1
Prime X.400 gateway, 2-1

Prime X.400 configuration file, 2-1
Prime X.400 session, 2-1

Prime X.400 logical network, 1-3
Prime X.400 reliable transfer store

(RTS), 2-12, 2-14
Prime X.400 session, 2-1
Prime X.400 user agent (UA), 2-1

Prime X.400 configuration file, 2-1
Prime X.400 session, 2-1
X.400 application, 2-1

Prime X.400 user agent, 1-3
application programming interface

(API), 1-3
X.400 application, 1-3

Prime X.400, 2-9
API library routines, 2-9
message handling system (MHS), 2-9
user application program, 2-9

Primitive data structures, 2-8
Probe submission (PS), 2-3, 2-5, 2-16

x4_probe API library routine, 2-16
Probe, 2-3, 2-5

delivery notification for probes (DNP),
2-3, 2-5

probe submission (PS), 2-3, 2-5
Programming, 2-1

Receipt notification (RN), 2-2, 2-5, 2-6,
2-15

x4_reply API library routine, 2-15

Index-4 First Edition

INDEX

r

Receipt notification receipt (RNR), 2-2,
2-5, 2-6, 2-15

See IPM message receipt (IPMMR),
x4_accept API library routine, 2-15
x4_get API library routine, 2-15
x4_read API library routine, 2-15
x4_reject API library routine, 2-15

Receipt notification, 2-2, 2-6
receipt notification (RN), 2-2, 2-5, 2-6
receipt notification receipt (RNR), 2-2,

2-5, 2-6
Releasing storage for a message envelope

or message header data structure, 1-3
Requesting that incoming messages,

delivery notifications, and receipt
notifications be read, 1-4, 2-8, 2-11

x4_read API library routine, 2-11

Sending an interpersonal message, 1-4
Standard substructure data structure, 2-7
Summary of API library routines, 3-2

x4 accept, 3-2
x4 alloc, 3-2
x4 clear, 3-2
x4_close, 3-2
x4_copy, 3-2
x4_decia5, 3-2
x4_dect61, 3-2
x4_drnotify, 3-2
x4_dump, 3-2
x4 enchain, 3-2
x4 encia5, 3-2
x4_enct61, 3-2
x4 error, 3-2
x4_find, 3-2
x4_get, 3-2
x4_getgdi, 3-2
x4 getmta, 3-2
x4_init, 3-2
x4_kill, 3-2
x4_logoff, 3-2
x4_logon, 3-2
x4 open gwi, 3-2
x4 open_uai, 3-2
x4_probe, 3-3
x4 put, 3-3
x4__read, 3-3

x4_reject, 3-3
x4 release, 3-3
x4_reply, 3-3
x4 send, 3-3

Terminating a communication path to a
Prime X.400 server process, 1-4, 2-13

x4_close API library routine, 2-13
Terminating a Prime X.400 session, 1-4,

2-13
x4_logoff API library routine, 2-13

The file STRUCH.INS.C, 2-7
The file X4_ERROR.H.INS.C, 2-9
The OSI reference model, 1-1, 1-2
The Prime X.400 model, 1-3

message transfer agent (MTA), 1-3
message transfer service (MTS), 1-3
Prime X.400 logical network, 1-3
user agent (UA), 1-3

The X.400 model, 1-2
message transfer agent (MTA), 1-2
user agent (UA), 1-2

U

User agent (UA), 1-2, 1-3, 2-1, 2-2, 2-6
X.400 message types, 2-2

User agent interface, 1-2
User application program, 2-9

X.400 API library routine return values,
C-l

X4_ERR_BAD_COPY (19), C-l
X4_ERR_BAD_KEY (4), C-l
X4_ERR_BAD_MESSAGE (33), C-l
X4_ERR_BAD_RESPONSE (36), C-l
X4_ERR_BAD_REV (12), C-l
X4_ERR_BAD_STRUC (3), C-l
X4_ERR_END_OF__LIST (18), C-l
X4__ERR_EXIA5 (50), C-l
X4_ERR_EXOCT (49), C-l
X4_ERR__EXSEQ (45), C-2
X4_ERR_EXSET (46), C-l
X4_ERR_EXTAG__INIT (47), C-2
X4_ERR_F_ELD_ERROR (51), C-2

First Edition Index-5

X.400 PROGRAMMER'S GUIDE

X4_ERR__FILE_ERR (27), C-2
X4__ERR__NVALID_CHARS (52), C-2
X4_ERR_ISC_ERR (26), C-2
X4__ERR_LIST__EMPTY (17), C-2
X4_ERR_L0GGED_0N (34), C-2
X4_ERR_MDNP (41), C-2
X4_ERR_NAC (39), C-2
X4_ERR__N0_DATA (20), C-2
X4_ERR__NO_MESSAGE (10), C-2
X4_ERR_NO_READ (ll), C-2
X4_ERR_NO_RESOURCE (6), C-2
X4__ERR_NOT_GWI (52), C-2
X4_ERR_NOT_OPEN (l), C-3
X4_ERR_OPEN (7), C-3
X4_ERR_RECONFIGURING (35), C-3
X4_ERR_SYN_ERR (32), C-3
X4_ERR_TERMINATED (2), C-3
X4_ERR_TOO_LONG (53), C-3
X4_ERR_UNKNOWN_USER (5), C-3
X4_ERR_UXSIZE (48), C-3
X4_OK (0), C-l

X.400 application, 1-2, 1-3, 2-1
X.400 message types for gateways, 2-2,

2-16
delivery notification, 2-2
handling gateway messages with the

API, 2-16
IPM message, 2-2
probe, 2-3
receipt notification, 2-2

X.400 message types for user agents
delivery notification, 2-2
IPM message, 2-2
receipt notification, 2-2

X.400 message types for user agents, 2-2,
2-13

handling user agent messages with the
API, 2-13

X.400 PI protocol, 2-4
X.400 P2 protocol, 2-6
X.400, 1-2

message handling system (MHS), 1-2
the OSI reference model, 1-2
user agent interface, 1-2
X.400 application, 1-2

X.409-encoded IA5Text body file, 2-12
X4_ACCEPT API library routine, 2-12,

2-14, 2-15, 2-17
X4_ACCEPT, A-6

c syntax, 3-4

description, 3-4
function, 3-4
PL1 syntax, A-6
returns, 3-4

X4_ALLOC, A-6
c syntax, 3-5
description, 3-5
function, 3-5
PL1 syntax, A-6
returns, 3-5

X4_CLEAR API library routine, 2-9
X4_CLEAR, A-7

c syntax, 3-6
description, 3-6
function, 3-6
PL1 syntax, A-7
returns, 3-6

X4_CLOSE API library routine, 2-10,
2-13

X4_CLOSE, A-7
c syntax, 3-7
description, 3-7
function, 3-7
PL1 syntax, A-7
returns, 3-7

X4_COPY, A-7
c syntax, 3-8
description, 3-8
function, 3-8
PL1 syntax, A-7
returns, 3-8

X4_DECIA5 API library routine, 2-12
X4_DECIA5,

c syntax, 3-9
description, 3-9
function, 3-9
returns, 3-9

X4_DECT61, A-7
c syntax, 3-11
description, 3-11
function, 3-11
PL1 syntax, A-7
returns, 3-11

X4_DRNOTIFY API library routine,
2-16

X4_DRNOTIFY, A-7
c syntax, 3-12
description, 3-12
function, 3-12
PL1 syntax, A-7

Index-6 First Edition

INDEX

returns, 3-12
X4_DUMP,

c syntax, 3-14
description, 3-14
function, 3-14
returns, 3-14

X4_ENCHAIN, A-8
c syntax, 3-15
description, 3-15
function, 3-15
PL1 syntax, A-8
returns, 3-15

X4_ENCIA5 API library routine, 2-12
X4_ENCIA5,

c syntax, 3-16
description, 3-16
function, 3-16
returns, 3-16

X4_ENCT61, A-8
c syntax, 3-17
description, 3-17
function, 3-17
PL1 syntax, A-8
returns, 3-17

X4_ERROR API library routine, 2-9
X4_ERROR, A-8

c syntax, 3-18
description, 3-18
function, 3-18
PL1 syntax, A-8
returns, 3-18

X4_FIND, A-8
c syntax, 3-19
description, 3-19
function, 3-19
PL1 syntax, A-8
returns, 3-19

X4_GET API library routine, 2-12, 2-14,
2-15, 2-17

linked lists, 2-12
X4_GET, A-9

c syntax, 3-20
description, 3-20
function, 3-20
PL1 syntax, A-9
returns, 3-25, 3-41

X4_GETGDI, A-9
c syntax, 3-26
description, 3-26
function, 3-26

PL1 syntax, A-9
returns, 3-26

X4_GETMTA, A-9
c syntax, 3-27
description, 3-27
function, 3-27
PL1 syntax, A-9
returns, 3-27

X4_INIT, A-10
c syntax, 3-28
description, 3-28
function, 3-28
PL1 syntax, A-10
returns, 3-28

X4_KILL, A-10
c syntax, 3-29
description, 3-29
function, 3-29
PL1 syntax, A-10
returns, 3-29

X4_LOGOFF API library routine, 2-11,
2-13

X4_LOGOFF, A-10
c syntax, 3-30
description, 3-30
function, 3-30
PL1 syntax, A-10
returns, 3-30

X4_LOGON API library routine, 2-10
X4_LOGON, A-10

c syntax, 3-31
description, 3-31
function, 3-31
PL1 syntax, A-10
returns, 3-31

X4__OPEN_GWI API library routine,
2-10

X4_0PEN_GW1, All
c syntax, 3-33
description, 3-33
function, 3-33
PL1 syntax, A-ll
returns, 3-33

X4_OPEN_UAI API library routine,
2-10

X4_OPEN_UAI, All
c syntax, 3-34
description, 3-34
function, 3-34
PL1 syntax, A-ll

First Edition Index-7

X.400 PROGRAMMERS GUIDE

returns, 3-34
X4_PR0BE API library routine, 2-16
X4_PROBE, A-ll

c syntax, 3-35
description, 3-35
function, 3-35
PL1 syntax, A-ll
returns, 3-35

X4_PUT API library routine, 2-13
X4__PUT, All

c syntax, 3-36
description, 3-36
function, 3-36
PL1 syntax, A-ll

X4__READ API library routine, 2-11,
2-14, 2-15, 2-17

X4__READ, A-12
c syntax, 3-42
description, 3-42
function, 3-42
PL1 syntax, A-12
returns, 3-42

X4_REJECT API library routine, 2-12,
2-14, 2-15, 2-17

X4_REJECT, A-12
c syntax, 3-44
description, 3-44
function, 3-44

PL1 syntax, A-12
returns, 3-44

X4_RELEASE, A-12
c syntax, 3-45
description, 3-45
function, 3-45
PL1 syntax, A-12
returns, 3-45

X4_REPLY API library routine, 2-15
X4_REPLY, A-12

c syntax, 3-46
description, 3-46
function, 3-46
PL1 syntax, A-12
returns, 3-46

X4_SEND API library routine, 2-13
X4_SEND, A-13

c syntax, 3-48
description, 3-48
function, 3-48
PL1 syntax, A-13
returns, 3-48

X4P$DEC1A5, A-13
PL1 syntax, A-13

X4P$DUMP, A-13
PL1 syntax, A-13

X4P$ENQA5, A-14
PL1 syntax, A-14

Index-8 First Edition

SURVEYS

READER RESPONSE FORM

X.400 Programmer's Guide
DOC 11277- 1LA

Your feedback will help us continue to improve the quality, accuracy, and organization of
our publications.

1. How do you rate this document for overall usefulness?

D excel lent D very good D good D fair D poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer
companies?

D Much better D Slightly better D About the same
D Much worse D Sl ight ly worse □ Can' t judge

5. Which other companies' manuals have you read?

N a m e : P o s i t i o n :

Company:
Address.*

. P o s t a l C o d e :

First Class Permit #531 Natick, Massachusetts 01760

Postage will be paid by:

BUSINESS REPLY MAIL

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

